
Few-Shot Parameter-Efficient 
Fine-Tuning is Better and Cheaper than 
In-Context Learning
Authors: Haokun Liu*, Derek Tam*, Mohammed Muqeeth*, Jay Mohta, Tenghao Huang, Mohit Bansal, Colin Raffel
ArXiv preprint, May 2022



Setting

- Few-shot classification tasks
- Minimal in-task data -> can’t just train/finetune model from scratch
- Other approaches:

- In-context Learning with massive LLMs
- Prompt Tuning and other parameter-efficient methods

- Drawbacks:
- Massive LLMs are costly to run inference on
- Context length limits # of few-shot examples that fit in context, and more shots -> higher 

cost 



Goals

- Provide a method that outcompetes prompting a massive LLM
- What features do we need to be competitive?

- ICL’s biggest advantage: single model for all tasks!
- ICL supports mixed batches: a single batched API call could have each 

request doing a different task
- What disadvantages of ICL can be removed?

- Don’t put labeled examples in context, to save on cost!
- Or: do just as well with a smaller model -> faster inference and less expensive 
- ICL is very sensitive! More consistent performance would be key



More Failures of Existing Approaches

- Existing approaches on smaller models:
- Naive few-shot finetuning
- Instruction Tuning -> task transfer
- Parameter-efficient finetuning (PEFT)

- Where do these fail? Succeed?
- Finetuning a whole model is costly + requires storage, and it may not be reusable
- PEFT methods do as well as whole model FT for less cost!

- But inserting new adapter layers require extra compute per input, and this prevents 
multi-task batches

- Prompt Tuning works well and allows for multi-task batches!



Contributions

- Contributions + Key Terms:
- A new parameter-efficient finetuning (“PEFT”) method, “(IA)^3”
- A “recipe” built on it and T0, called “T-Few”
- A comparison between PEFT and In-Context Learning (“ICL”)
- Conclusion:

- “Few-shot PEFT is better and cheaper than ICL”!



(IA)^3

- (IA)^3: “Infused Adapter by Inhibiting and Amplifying Inner Activations”
- 3 learned vectors l_k, l_v, l_ff 

- Modifies attention:
- And feedforward:
- Pointwise multiplication: cheap component-wise rescaling

- Very few parameters added (and can be absorbed) -> easy to store separately
- Each input in a batch can take a different task-specific set of learned vectors!



Other Tricks

- Auxiliary losses



Full Method



(IA)^3 vs. Other PEFT Methods

- Outperforms across the board
- Average over ~11 datasets

- Better than full finetuning (!)
- What makes some methods outperform others?



Head-to-head with ICL

- Outperforms GPT-3 175B (`davinci`?)
- Cost of training IA^3 is outweighed by the cost of running GPT-3 on only 

dozens of examples!



RAFT Benchmark

- 11 “real-world” tasks
- No val set, hidden test set, 50 train examples
- Train T-Few on all tasks’ train sets combined



Miscellaneous Discoveries

- T0 does better zero-shot than with few-shot examples!
- Since only trained with zero-shot data. FLAN 2022 / Flan Collection demonstrate adding 

few-shot data in instruction tuning mixture makes models more robust to formatting + do 
few shot better

- For all datasets, authors report median across many prompts
- Intentionally did not select specific prompt or write these for the paper



Discussion Questions

- Could you understand the explanation of (IA)^3 ?
- What’s your intuition for why IA^3 works?

- (What is your comfort level with the “baseline” PEFT methods described here?)
- Do you expect this method to transfer to decoder-only models? Why or why 

not?



Extra: Prompt Tuning

Image credits: https://ai.googleblog.com/2022/02/guiding-frozen-language-models-with.html ; Power of Scale for Prompt Tuning (Lester et al. 2021)

https://ai.googleblog.com/2022/02/guiding-frozen-language-models-with.html


Extra: Adapter layers



Extra: LoRA

- Low-rank factorization
- Applied in parallel -> absorbable into the model!



Extra: Prefix Tuning

- Prompt tuning, but at every layer


