Few-Shot Parameter-Efficient
Fine-Tuning is Better and Cheaper than
In-Context Learning

Authors: Haokun Liu*, Derek Tam*, Mohammed Mugeeth*, Jay Mohta, Tenghao Huang, Mohit Bansal, Colin Raffel

ArXiv preprint, May 2022



Setting

- Few-shot classification tasks
- Minimal in-task data -> can't just train/finetune model from scratch

- Other approaches:
- In-context Learning with massive LLMs
- Prompt Tuning and other parameter-efficient methods
- Drawbacks:
- Massive LLMs are costly to run inference on
- Context length limits # of few-shot examples that fit in context, and more shots -> higher
cost



Goals

- Provide a method that outcompetes prompting a massive LLM
- What features do we need to be competitive?
- ICLs biggest advantage: single model for all tasks!
- ICL supports mixed batches: a single batched API call could have each
request doing a different task

- What disadvantages of ICL can be removed?
- Don't put labeled examples in context, to save on cost!
- Or: dojust as well with a smaller model -> faster inference and less expensive
- ICL is very sensitive! More consistent performance would be key



More Failures of Existing Approaches

- Existing approaches on smaller models:
- Naive few-shot finetuning
- Instruction Tuning -> task transfer
- Parameter-efficient finetuning (PEFT)

- Where do these fail? Succeed?
- Finetuning a whole model is costly + requires storage, and it may not be reusable
- PEFT methods do as well as whole model FT for less cost!
- But inserting new adapter layers require extra compute per input, and this prevents
multi-task batches
- Prompt Tuning works well and allows for multi-task batches!



Contributions

- Contributions + Key Terms:
- A new parameter-efficient finetuning (“PEFT”) method, “(IA)*3”
- A‘recipe” built on it and TO, called “T-Few”
- A comparison between PEFT and In-Context Learning (“ICL")
- Conclusion:
- “Few-shot PEFT is better and cheaper than ICL"!



(A3

- (IA)*3: “Infused Adapter by Inhibiting and Amplifying Inner Activations”

- 3learned vectors Lk, Lv, Lff Q. © K7)
- Modifies attention: Vi,
- And feedforward: (lg ® y(Wyiz))Wa,

- Pointwise multiplication: cheap component-wise rescaling

- Very few parameters added (and can be absorbed) -> easy to store separately
- Each input in a batch can take a different task-specific set of learned vectors!
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Other Tricks

- Auxiliary losses

For evaluation, we use rank classification (described in section 3.1) which depends on both the
probability that the model assigns to the correct choice as well as the probabilities assigned by the
model to the incorrect choices. To account for this during training, we consider adding an unlikelihood
loss [16, 17]:
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which discourages the model from predicting tokens from incorrect target sequences, where (™) =
(91+ 92+ - - -+ Ypemy ) s the n-th of N incorrect target sequences. We hypothesize that adding Ly, will

improve results on rank classification because the model will be trained to assign lower probabilities
to incorrect choices, thereby improving the chance that the correct choice is ranked highest.
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length-normalized log probability of a given output sequence 3(x,y) = % E¢T=1 log p(y: %, y<t)-
Then, we maximize the length-normalized log probability of the correct answer choice by minimizing
the softmax cross-entropy loss:
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When training a model with Ly, Ly, and Ly,n, we simply sum them. This avoids introducing any
hyperparameters that would be problematic to tune in the few-shot setting (where realistically-sized
validation sets are tiny by necessity [31, 32]).

Ly = —log (2)



Full Method

Losses used in T-Few
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Figure 1: Diagram of (IA)® and the loss terms used in the T-Few recipe. Left: (IA)? introduces the
learned vectors Iy, [, and lg which respectively rescale (via element-wise multiplication, visualized as
©®) the keys and values in attention mechanisms and the inner activations in position-wise feed-forward
networks. Right: In addition to a standard cross-entropy loss Ly 1, we introduce an unlikelihood loss
Ly, that lowers the probability of incorrect outputs and a length-normalized loss L1 that applies a
standard softmax cross-entropy loss to length-normalized log-probabilities of all output choices.



(IA)A3 vs. Other PEFT Methods
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Figure 2: Accuracy of different parameter-
efficient methods when applied to few-shot fine-
tuning of TO-3B. Methods that were evaluated us-
ing different parameter budgets are represented
with larger and smaller markers representing
more or less parameters updates.



Head-to-head with ICL

- Outperforms GPT-3 175B (‘davinci'?)
- Cost of training IA*3 is outweighed by the cost of running GPT-3 on only
dozens of examples!

Inference Training Disk Accuracy

Method FLOPs FLOPs space

T-Few 1.1e12 2.7e16 42MB 72.4%
TO [1] 1.1e12 0 0B 66.9%
T5+LM [14] 4.5el3 0 16 kB 49.6%
GPT-3 6.7B [4] 54el3 0 16 kB 57.2%
GPT-3 13B [4] 1.0el14 0 16 kB 60.3%
GPT-3 175B [4] 1.4el5 0 16 kB 66.6%

Table 1: Accuracy on held-out TO tasks and computational costs for
different few-shot learning methods and models. T-Few attains the
highest accuracy with 1,000 lower computational cost than ICL
with GPT-3 175B. Fine-tuning with T-Few costs about as much as
performing ICL on 20 examples with GPT-3 175B.



RAFT Benchmark

11 “real-world” tasks
No val set, hidden test set, 50 train examples
Train T-Few on all tasks’ train sets combined

Method Acc.

T-Few 75.8%
Human baseline [2] 73.5%
PET [50] 69.6%
SetFit [51] 66.9%
GPT-3 [4] 62.7%

Table 2: Top-5 best methods on
RAFT as of writing. T-Few is
the first method to outperform the
human baseline and achieves over
6% higher accuracy than the next-
best method.



Miscellaneous Discoveries

- TO does better zero-shot than with few-shot examples!

- Since only trained with zero-shot data. FLAN 2022 / Flan Collection demonstrate adding
few-shot data in instruction tuning mixture makes models more robust to formatting + do
few shot better

- For all datasets, authors report median across many prompts

- Intentionally did not select specific prompt or write these for the paper



Discussion Questions

- Could you understand the explanation of (IA)*3 ?

- What's your intuition for why I1A*3 works?
(What is your comfort level with the “baseline” PEFT methods described here?)

- Do you expect this method to transfer to decoder-only models? Why or why
not?



Extra: Prompt Tuning
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Figure 2: Model tuning requires making a task-
specific copy of the entire pre-trained model for each
downstream task and inference must be performed in
separate batches. Prompt tuning only requires stor-
ing a small task-specific prompt for each task, and
enables mixed-task inference using the original pre-
trained model. With a T5 “XXL” model, each copy
of the tuned model requires 11 billion parameters. By
contrast, our tuned prompts would only require 20,480
parameters per task—a reduction of over five orders of
magnitude—assuming a prompt length of 5 tokens.
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https://ai.googleblog.com/2022/02/guiding-frozen-language-models-with.html

Extra: Adapter layers
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Extra: LORA

Low-rank factorization
Applied in parallel -> absorbable into the model!
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Figure 1: Our reparametriza-
tion. We only train A and B.



Extra: Prefix Tuning

- Prompt tuning, but at every layer




