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Problem

* How can we make use of longer context in transformers in an efficient
way?

* Most techniques address smaller model sizes
* At larger model sizes the Feed Forward layer is the bottleneck, not attention
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Prior work: Recurrence and compressing
memory
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https://arxiv.org/abs/1901.02860

Prior work: Recurrence and compressing
memory

Compressive Tranformer (Raeet al, 2019)

Similar to Transformer-XL

Instead of discarding old past activations it compresses them

Keeping two types of memory
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https://arxiv.org/pdf/1911.05507.pdf

Prior work: Recurrence and compressing
memory
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3. Dilated convolutions

4. Most used (e.g., sorted by usage of attention).

An additional auto-encoding loss

learns to reconstruct the original memory from its compressed version


https://arxiv.org/pdf/1911.05507.pdf

Memorizing Transformers - Overview
e Use approximate k-nearest-neighbor (kNN) lookup

* kNN lookup does not do averaging or summarization of tokens at long
distances, but retrieves exact values even from the distant context.

* Gradients are not backpropagated into the external memory, which is
critical to the scalability of the technique



Recall Transformer architecture
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Recall Transformer architecture
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Feed
Forward

Add & Norm

Multi-Head
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x: input sequence

out = LN(c¢’ + FF(c")

FF(C,) = f(C,W1 + bl)WZ + bz

¢’ =LN(c+ x)

¢ = MultiHeadAttention(q, k, v)
q, k,v = QKV_Projection(x)




Recall self attention

* Combine representations corresponding to each input location with a
weighted sum

* The weights are computed by a dot product attention operation



Recall self attention
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* Key vector k; = Wix;
* Value vector v; = W, x;




Recall self attention

* Instead of using one vector x; for each input location

* Each input vector is projected into three vectors

* Query vector q; = W,x; —
. Y T T a;; = softmax;(q;.k; )
Key vector k; = W, x;

* Value vector v; = W, x;




Memorizing transformers




Memorizing transformers

0000 0000



Memorizing transformers



Memorizing transformers




Memorizing transformers

eeeeeeeeeeeeee

1 T2 I3 I




Memorizing transformers

T 1 9%2 £3 £4 z

eeeeeeeeeeeeee

MMMMMM




Memorizing transformers

Current segment

X9 10 11 L12

MMMMMM

X1 1)) xs3 L4 Ts L6 X7 Zsg X9 10 11 12




Memorizing transformers
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Memorizing transformer

* If we have many segments, this becomes interactable
* E.g., if we have 100 segments of 512
* Then we would be attending to 51200 keys, values
 Computationally expensive

* Solution?
* Not to attend to everything
* Just attend to most relevant keys and values
* How?
* Retrieve the relevant ones!



Memorizing transformer
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Efficient approximate nearest neighbor algorithm to find top K similar keys




Memorizing transformer

Memgry Top-K retrieval
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Efficient approximate nearest neighbor algorithm to find top K similar keys



Memorizing transformers

Retrieved keys @ @ @

and values

from memory @ @ @

@ Query
00. ® O,
Keys and values in @ @ @

the local context




Memorizing transformers - self attention
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Keys and values in
the local context

/

Context vector from retrieved memory

Vi = ATTN(q;, K©, V()

Query

V. = ATTN(q;, K®,v®)

Context vector from local window



Memorizing transformers — self attention

Context vector from retrieved memory

Vi = ATTN(q;, K©, V()
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V. = ATTN(q;, K®,v®)

Context vector from local window



Memorizing transformers — self attention

Context vector from retrieved memory

— @ @
Retrieved keys @ @ @ /’ Vy = ATTN (q;, K*, V")

and values J

from memory @ @ @ \
V=VyOg+1O(1-g)
g =a(b,)

Keys and values in @ @ @ \

the local context

Final context vector

V. = ATTN(q;, K®,v®)

The bias b, is a learned per-head scalar parameter, which allows

: Context vector from local window
each head to choose between local and long-range attention



Details

* Position information
* Similar to T5, use relative position bias for local attention
* For KNN-attention, they don’t use position information



Details

* Batching
subsequence
A
1 | 1 1 | | | | | | | | |
batch Document A Document C Document F ...
dimension Document B Document D Document E | Document G ...

* Separate memory for each slice in the batch
* Clear the memory after each document



Details

e Distributional shift
* As memory becomes long, the older keys, and values become stale
* Remember, no backpropagation into the memory
* Their magnitude might also change
* To alleviate this, they normalize keys and queries



Details

* Approximate kNN instead of exact kNN
* Faster and more efficient
e Custom approximate kNN method for TPUs with recall of 90%



Experiments
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Results

* Also helps in language modeling tasks from general domain
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Scale

Adding an 8K memory results in similar performance to an 8X larger model
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Finetuning

e What if we don’t want to train with
memory from scratch?

e Within 20K steps (4% of the pre-
training time) the fine-tuned model
has already closed 85% of the gap

» After 100k steps it has closed the gap
entirely.
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Scaling the memory size

Results from a 256K memory is comparable to a 40X larger model

* 8K memory

o 262K memory
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What does memorizing transformer retrieve?

Predicting lemma name Look up definitions -- 20K tokens apart.

lemma markov_inequality:
assumes "Aa. 0 < X a" and "integrable M X" "0 < t"

shows —prob {a-& space M. t X a} expectation X / t"
proof -
also have "... < ES.expectation ?Y / 1" ——=={*proof adapted from @{thm [source] edge_space.Markov_inequal
by (rule prob_space.farkov. inequality) o
= have "(/* x. ennreal (X x) M) = (/x. X x OM)"

using assms by (intro nn_integral eq integral) auto



What does memorizing transformer retrieve?

Predicting lemma name Look up definitions -- 20K tokens apart.
lemma markov_inequality:
Same structure assumes "Aa. 0 < X a" and "integrable M X" "0 < t"
A shows —prob {a & space M. t X a} expectation X /
1so have *... < ES expectation ?Y / i proot -
by (rul r B ' _) =={*proof adapted from @{thm [source] edge space.Markov inequal
y ML PraN_apdne: @{term prob space}s *}
have "(/" x. ennreal (X x) dM) = (fx. X x dM)"

using assms by (intro nn_integral eq integral) auto

Example from authors



Takeaways

* Memory helps utilizing longer dependencies
* Helps improving LM performance without scaling up the model size



Discussion

* Exploring the limits of the memory size?
* We saw that larger memory helps improving performance in a nontrivial way

 What is the limit?
* What if we could memorize the entire knowledge-base (e.g., Wikipedia)

* Memorize the entire internet?
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Discussion

* How does memorizing transformers connect with other efficient
transformers?

* E.g., Sparse methods?



Discussion

* How do these type of models can help with abilities like ICL or Few-
shot learning?



