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• How can we make use of longer context in transformers in an efficient 
way?

• Most techniques address smaller model sizes 
• At larger model sizes the Feed Forward layer is the bottleneck, not attention



Efficient transformers

Fig reference: Tay et al., 2020

https://arxiv.org/pdf/2009.06732.pdf
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Fig reference: Tay et al., 2020

Memorizing 
Transformers

https://arxiv.org/pdf/2009.06732.pdf


Prior work: Recurrence and compressing 
memory

Transformer-XL (Dai et al., 2019)

Segment-level recurrence

Representations from previous steps are cached and reused

No gradient updates on previous segments

Use of relative position embeddings in attention computation

https://arxiv.org/abs/1901.02860


Prior work: Recurrence and compressing 
memory

Compressive Tranformer (Rae et al., 2019)

Similar to Transformer-XL

Instead of discarding old past activations it compresses them

Keeping two types of memory

A primary memory

An additional compressed memory

https://arxiv.org/pdf/1911.05507.pdf


Prior work: Recurrence and compressing 
memory

Compressive Tranformer (Rae et al., 2019)

Approaches to compress the memory:

1. mean/max pooling

2. 1D convolutions

3. Dilated convolutions

4. Most used (e.g., sorted by usage of attention).

An additional auto-encoding loss

learns to reconstruct the original memory from its compressed version

https://arxiv.org/pdf/1911.05507.pdf


Memorizing Transformers - Overview

• Use approximate k-nearest-neighbor (kNN) lookup

• kNN lookup does not do averaging or summarization of tokens at long 
distances, but retrieves exact values even from the distant context.

• Gradients are not backpropagated into the external memory, which is 
critical to the scalability of the technique



Recall Transformer architecture

𝐹𝐹 𝑐′ = 𝑓 𝑐!𝑊" + 𝑏" 𝑊# + 𝑏#

out = LN(𝑐′ + FF(𝑐′)

𝑞, 𝑘, 𝑣 = QKV_Projection(𝑥)
𝑐 = MultiHeadAttention(q, k, v)

𝑥: input sequence

𝑐! = 𝐿𝑁(𝑐 + 𝑥)

out
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Recall self  attention

• Combine representations corresponding to each input location with a 
weighted sum

• The weights are computed by a dot product attention operation



Recall self  attention

• Instead of using one vector 𝑥! for each input location
• Each input vector is projected into three vectors

• Query vector 𝑞! = 𝑊"𝑥!
• Key vector  𝑘! = 𝑊#𝑥!
• Value vector  𝑣! = 𝑊$𝑥!

𝑥% 𝑥& 𝑥'
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𝛼!(

𝛼!) = softmax)(𝑞! . 𝑘) )

Dot product
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Memorizing transformers

Memory

Current segment

Maintains a memory of keys and values from 
previous segments

= Memory
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• If we have many segments, this becomes interactable
• E.g., if we have 100 segments of 512
• Then we would be attending to 51200 keys, values
• Computationally expensive
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Memorizing transformer

• If we have many segments, this becomes interactable
• E.g., if we have 100 segments of 512
• Then we would be attending to 51200 keys, values
• Computationally expensive

• Solution?
• Not to attend to everything
• Just attend to most relevant keys and values
• How? 

• Retrieve the relevant ones!



Memorizing transformer

Memory

Query

Top-K retrieval

Efficient approximate nearest neighbor algorithm to find top K similar keys



Memorizing transformer

Memory

Query

Efficient approximate nearest neighbor algorithm to find top K similar keys

Top-K retrieval



Memorizing transformers

….𝑘!" 𝑘#" 𝑘$"

….𝑘! 𝑘# 𝑘%

Retrieved keys 
and values 
from memory

Keys and values in 
the local context

Query
….𝑣! 𝑣# 𝑣%

….𝑣!" 𝑣#" 𝑣$"



Memorizing transformers - self  attention

….𝑘!" 𝑘#" 𝑘$"

….𝑘! 𝑘# 𝑘%

Retrieved keys 
and values 
from memory

Keys and values in 
the local context

Query
….𝑣! 𝑣# 𝑣%

….𝑣!" 𝑣#" 𝑣$"
𝑉+ = 𝐴𝑇𝑇𝑁(𝑞! , 𝐾 ! , 𝑉 ! )

𝑉, = 𝐴𝑇𝑇𝑁(𝑞! , 𝐾 ! , 𝑉 ! )

Context vector from retrieved memory

Context vector from local window
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Memorizing transformers – self  attention
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𝑉, = 𝐴𝑇𝑇𝑁(𝑞! , 𝐾 ! , 𝑉 ! )

Context vector from retrieved memory

Context vector from local window

𝑉 = 𝑉+⨀𝑔 + 𝑉-⨀ 1 − 𝑔
𝑔 = 𝜎 𝑏.

Final context vector

The bias 𝑏& is a learned per-head scalar parameter, which allows 
each head to choose between local and long-range attention



Details

• Position information
• Similar to T5, use relative position bias for local attention
• For KNN-attention, they don’t use position information



Details

• Batching

• Separate memory for each slice in the batch
• Clear the memory after each document



Details

• Distributional shift
• As memory becomes long, the older keys, and values become stale
• Remember, no backpropagation into the memory
• Their magnitude might also change
• To alleviate this, they normalize keys and queries



Details

• Approximate kNN instead of exact kNN
• Faster and more efficient
• Custom approximate kNN method for TPUs with recall of 90%
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Fig from authors
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Results

• Also helps in language modeling tasks from general domain

Fig from authors



Scale

Adding an 8K memory results in similar performance to an 8X larger model 
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Finetuning

• What if we don’t want to train with 
memory from scratch?

• Within 20K steps (4% of the pre-
training time) the fine-tuned model 
has already closed 85% of the gap

• After 100k steps it has closed the gap 
entirely.



Scaling the memory size

Results from a 256K memory is comparable to a 40X larger model

Fig from authors of memorizing transformers



What does memorizing transformer retrieve?



What does memorizing transformer retrieve?



What does memorizing transformer retrieve?

Example from authors



Takeaways

• Memory helps utilizing longer dependencies
• Helps improving LM performance without scaling up the model size



Discussion

• Exploring the limits of the memory size?
• We saw that larger memory helps improving performance in a nontrivial way
• What is the limit? 

• What if we could memorize the entire knowledge-base (e.g., Wikipedia)
• Memorize the entire internet?



Discussion

• How does memorizing transformers connect with other efficient 
transformers?
• E.g., Sparse methods?



Discussion

• How do these type of models can help with abilities like ICL or Few-
shot learning?


