Memorizing Transtformers

Yuhuai Wu, Markus N. Rabe, Delesley Hutchins, Christian Szegedy
Google Research

Presenter: Arman Cohan

Problem

* How can we make use of longer context in transformers in an efficient
way?

Problem

* How can we make use of longer context in transformers in an efficient
way?

* Most techniques address smaller model sizes
* At larger model sizes the Feed Forward layer is the bottleneck, not attention

Efficient transformers

Transformer-XL
(Dai et al., 2019)

R

Compressive

Transformer
(Rae et al., 2018)

urrence

Performer
(Choromanski et al., 2020)

Set Transformer
(Lee et al,, 2019)

Low Rank /
Linformer Kernels

(Wang et al., 2020b)

Compressed
(Liu et al., 2018)

Longformer Routing
ETC (Beltagy et al., 2020) Transformer
i insli (Roy et al., 2020)
Linear Synthesizer (Ainslie et al., 2020) R
Transformer (Tay et al., 2020a) . ‘
i Big Bird

(Katharopoulos et al., 2020) (Zaheer et al., 2020)

)) Learnable
Fixed/Factorized/ | ¢ wom | Patterns
Random Patterns | Transformer

(Tay et al., 2020b)
Reformer

Blockwise Transformer
(Qiu et al., 2019)

(Kitaev et al., 2020)

Sparse Transformer

Image Transformer (ChilditalB2010)
(Parmar et al., 2018)

Axial Transformer
(Ho etal., 2019)

Fig reference: Tay et al., 2020

https://arxiv.org/pdf/2009.06732.pdf

Efficient transformers

Transformer-XL
(Dai et al., 2019)

R

Compressive

Transformer
(Rae et al., 2018)

urrence

Performer

(Choromanski et al., 2020) Set Transformer

(Lee et al,, 2019)

Low Rank /
Linformer Kerne' S

(Wang et al., 2020b)

- Memorizing

Transformers

Compressed
(Liu et al., 2018)

Routing

Transformer,
(Roy et al., 2020)

Longformer
(Beltagy et al., 2020)

ETC

(Ainslie et al., 2020)

Big Bird

(Zaheer et al., 2020)

Linear Synthesizer

L.,
Transformer averst2estel
(Katharopoulos et al., 2020)

' : Ceamane
Fixed/Factorized/ | & .o Patterns

Random Patterns | Transformer

(Tay et al., 2020b)

. Reformer
Blockwise Transformer (Kitaev et al,, 2020)
(Qiu et al., 2019)
Sparse Transformer
Image Transformer (Chidetal 2009)

(Parmar et al., 2018)

Axial Transformer
(Ho etal., 2019)

Fig reference: Tay et al., 2020

https://arxiv.org/pdf/2009.06732.pdf

Prior work: Recurrence and compressing
memory

Transformer-XL (Dai etal. 2019) © 00 of

Segment-level recurrence © 0 0 0!
Representations from previous steps are cached andreused ¢ ¢ o 0 |

No gradient updates on previous segments

Use of relative position embeddings in attention computation S ' v

Fixed (No Grad) New Segment

https://arxiv.org/abs/1901.02860

Prior work: Recurrence and compressing
memory

Compressive Tranformer (Raeet al, 2019)

Similar to Transformer-XL

Instead of discarding old past activations it compresses them

Keeping two types of memory

A pri Compressed Memory ﬁfc@ Memory Sequence

rimary memo

brimary memory oooco%ooocomooo

An additional compressed memory 000000 f‘() 00000 | 000
VARG |

000000 000000 000

I A I v | |] | | \t
rrrrrrerrrrrr T T T T T | | I I | | | | I 7

https://arxiv.org/pdf/1911.05507.pdf

Prior work: Recurrence and compressing
memory

COm pre55|Ve Tra nfo rmer (Rae et al. 201 9) Compressed Memory nfcm Memory Sequence
Approaches to compress the memory: 0000 %f.() 00000 000

00000 000000 000
1. mean/max pooling NVRYC

00000O. Q..

2- 1DconVOIUtionS IIIIIIIIIIIIIIIll

[
IIIIIIIII | I I I | | |

3. Dilated convolutions

4. Most used (e.g., sorted by usage of attention).

An additional auto-encoding loss

learns to reconstruct the original memory from its compressed version

https://arxiv.org/pdf/1911.05507.pdf

Memorizing Transformers - Overview
e Use approximate k-nearest-neighbor (kNN) lookup

* kNN lookup does not do averaging or summarization of tokens at long
distances, but retrieves exact values even from the distant context.

* Gradients are not backpropagated into the external memory, which is
critical to the scalability of the technique

Recall Transformer architecture

out

Add & Norm
Feed
Forward

Add & Norm

Multi-Head
Attention

x: input sequence

out = LN(c¢" + FF(c")
FF(C’) — f(C,W1 + bl)WZ + bz
¢’ =LN(c+ x)

¢ = MultiHeadAttention(q, k, v)
q, k,v = QKV_Projection(x)

Recall Transformer architecture

out

Add & Norm
Feed
Forward

Add & Norm

Multi-Head
Attention

x: input sequence

out = LN(c¢’ + FF(c")

FF(C,) = f(C,W1 + bl)WZ + bz

¢’ =LN(c+ x)

¢ = MultiHeadAttention(q, k, v)
q, k,v = QKV_Projection(x)

Recall self attention

* Combine representations corresponding to each input location with a
weighted sum

* The weights are computed by a dot product attention operation

Recall self attention

* Instead of using one vector x; for each input location

* Each input vector is projected into three vectors

* Query vector q; = Wyx; ajj = SOftman (ql kj)

* Key vector k; = Wix;
* Value vector v; = W, x;

Recall self attention

* Instead of using one vector x; for each input location

* Each input vector is projected into three vectors

* Query vector q; = W,x; —
. Y T T a;; = softmax;(q;.k;)
Key vector k; = W, x;

* Value vector v; = W, x;

Memorizing transformers

Memorizing transformers

0000 0000

Memorizing transformers

Memorizing transformers

Memorizing transformers

eeeeeeeeeeeeee

1 T2 I3 I

Memorizing transformers

T 1 9%2 £3 £4 z

eeeeeeeeeeeeee

MMMMMM

Memorizing transformers

Current segment

X9 10 11 L12

MMMMMM

X1 1)) xs3 L4 Ts L6 X7 Zsg X9 10 11 12

Memorizing transformers

Current segment

T1 T2 T3 4 R VO
OO0 00 O00O0O
| </ s
_ — = —Vg‘-;’;z@—z—’_/

| T 7 X A AT
- OO0 00 O00O0
RS RSO

| P

Or O) Maintains a memory of keys and values from ,

["% previous segments

<

- = Memory
eyop _ ___ -

L2 L3 L4 s Te T Ts

Memorizing transformer

* If we have many segments, this becomes interactable
* E.g., if we have 100 segments of 512
* Then we would be attending to 51200 keys, values
 Computationally expensive

Memorizing transformer

* If we have many segments, this becomes interactable
* E.g., if we have 100 segments of 512
* Then we would be attending to 51200 keys, values
 Computationally expensive

* Solution?
* Not to attend to everything
* Just attend to most relevant keys and values

Memorizing transformer

* If we have many segments, this becomes interactable
* E.g., if we have 100 segments of 512
* Then we would be attending to 51200 keys, values
 Computationally expensive

* Solution?
* Not to attend to everything
* Just attend to most relevant keys and values
* How?
* Retrieve the relevant ones!

Memorizing transformer

Query

Memw

O00000000OO0O0OO0O0OO

Efficient approximate nearest neighbor algorithm to find top K similar keys

Memorizing transformer

Memgry Top-K retrieval

oJeX JeoleoYeoleX YeleoleleoXeX YeoXe

Efficient approximate nearest neighbor algorithm to find top K similar keys

Memorizing transformers

Retrieved keys @ @ @

and values

from memory @ @ @

@ Query
00. ® O,
Keys and values in @ @ @

the local context

Memorizing transformers - self attention

Retrieved keys
and values
from memory

Keys and values in
the local context

/

Context vector from retrieved memory

Vi = ATTN(q;, K©, V()

Query

V. = ATTN(q;, K®,v®)

Context vector from local window

Memorizing transformers — self attention

Context vector from retrieved memory

Vi = ATTN(q;, K©, V()

Retrieved keys @ @ @ /

and values

from memory @ @ @ J

V=V,0g+V.0(1-g)
g = U(bg)

Keys and values in @ @ @ \

the local context

Final context vector

V. = ATTN(q;, K®,v®)

Context vector from local window

Memorizing transformers — self attention

Context vector from retrieved memory

— @ @
Retrieved keys @ @ @ /’ Vy = ATTN (q;, K*, V")

and values J

from memory @ @ @ \
V=VyOg+1O(1-g)
g =a(b,)

Keys and values in @ @ @ \

the local context

Final context vector

V. = ATTN(q;, K®,v®)

The bias b, is a learned per-head scalar parameter, which allows

: Context vector from local window
each head to choose between local and long-range attention

Details

* Position information
* Similar to T5, use relative position bias for local attention
* For KNN-attention, they don’t use position information

Details

* Batching
subsequence
A
1 | 1 1 | | | | | | | | |
batch Document A Document C Document F ...
dimension Document B Document D Document E | Document G ...

* Separate memory for each slice in the batch
* Clear the memory after each document

Details

e Distributional shift
* As memory becomes long, the older keys, and values become stale
* Remember, no backpropagation into the memory
* Their magnitude might also change
* To alleviate this, they normalize keys and queries

Details

* Approximate kNN instead of exact kNN
* Faster and more efficient
e Custom approximate kNN method for TPUs with recall of 90%

Experiments

Perplexity: The lower the better.

3.4
~f - Informal Math (arXiv Math)

3.2 x

3.0 D 4 Code (Github)
2928 ~{\ - Formal Math (Isabelle)
=2

gz.s
$24
2.2
2.0

N1o'8;nemory 1K 8K 65K

Memory size

Fig from authors

Experiments

Perplexity: The lower the better.

= Informal Math (arXiv Math)

< -k
3.0 l S " Code (Github)
y

- Formal Math (Isabelle)

N1o'8memory 1K 8K 65K

Memory size

Fig from authors

Experiments

Perplexity: The lower the better.

3.4

3.2 L N ~fe- Informal Math (arXiv Math)
30 @S @ Code (Github)

208 Sy s k- Formal Math (Isabelle)

x NN -~

526 R T

$ 24 R T . e
2.0 — *::: -4
1.8 -9
No memory 1K 8K 65K

Memory size

Fig from authors

Results

* Also helps in language modeling tasks from general domain

17 .\\ —r - English Novels (PG19)
~
16 . -.- Webtext (C4)
> e
g 15 “s
a —o
CGIJ 14 *\\ \.' ----- -‘
13 .
12 oo —*
T 1 s *
l\]o memory 1K 8K 65K

Memory size

Fig from authors

Scale

Adding an 8K memory results in similar performance to an 8X larger model

%
X
3
3
3

2.8
= N ~@ - transformer
‘2" 2.6 “~<_ =k- memorizing transformer
> . \\\
X 24 Wa_ e

-~
\(U/ \\~ \\\\
~
222 >~ 9 —Sss
< ~< @
o T
—~
gZO .
~

Q. *

1.8

200M 1B 8B
Model size

Finetuning

 What if we don’t want to train with memory from scratch?

Finetuning

 What if we don’t want to train with memory from scratch?

2.8
= — Memory Fine-tuning
© — Transformer
E 2.6 — Memorizing Transformer
%
O
224
X
9o
e
)
o 2.2

0 300K 500K 600K
Training steps

Finetuning

e What if we don’t want to train with
memory from scratch?

e Within 20K steps (4% of the pre-
training time) the fine-tuned model
has already closed 85% of the gap

» After 100k steps it has closed the gap
entirely.

2.8
= = Memory Fine-tuning
© — Transformer
% 2.6 — Memorizing Transformer
.>3
g
224 T\ T TTTTTTTTTTTTTTTWTTTTITTTT
X
9
o
22 e

0 300K 500K 600K

Training steps

Scaling the memory size

Results from a 256K memory is comparable to a 40X larger model

* 8K memory

o 262K memory

2.8
3 e . -@ - transformer
g 2.6 N ~ - memorizing transformer
> \\\
<24 Wa_ e
- \~\~ \\‘\
222 Q L3N S
%20 ~~~~~
o ¢
1.8
200M 1B 8B
Model size

Fig from authors of memorizing transformers

What does memorizing transformer retrieve?

Predicting lemma name

also have "... < ES.expectation ?Y / 1"
by (rule prob space.markov inequalit

What does memorizing transformer retrieve?

Predicting lemma name Look up definitions -- 20K tokens apart.

lemma markov_inequality:
assumes "Aa. 0 < X a" and "integrable M X" "0 < t"

shows —prob {a-& space M. t X a} expectation X / t"
proof -
also have "... < ES.expectation ?Y / 1" ——=={*proof adapted from @{thm [source] edge_space.Markov_inequal
by (rule prob_space.farkov. inequality) o
= have "(/* x. ennreal (X x) M) = (/x. X x OM)"

using assms by (intro nn_integral eq integral) auto

What does memorizing transformer retrieve?

Predicting lemma name Look up definitions -- 20K tokens apart.
lemma markov_inequality:
Same structure assumes "Aa. 0 < X a" and "integrable M X" "0 < t"
A shows —prob {a & space M. t X a} expectation X /
1so have *... < ES expectation ?Y / i proot -
by (rul r B ' _) =={*proof adapted from @{thm [source] edge space.Markov inequal
y ML PraN_apdne: @{term prob space}s *}
have "(/" x. ennreal (X x) dM) = (fx. X x dM)"

using assms by (intro nn_integral eq integral) auto

Example from authors

Takeaways

* Memory helps utilizing longer dependencies
* Helps improving LM performance without scaling up the model size

Discussion

* Exploring the limits of the memory size?
* We saw that larger memory helps improving performance in a nontrivial way

 What is the limit?
* What if we could memorize the entire knowledge-base (e.g., Wikipedia)

* Memorize the entire internet?

2.8
ry & _ @ - transformer
‘2" 2.6 ~~o_ =k- memorizing transformer
> \\\
*8Kmemory X 24 *\\ ‘\
— -~ \\\
@ 262K memory i:: @ \‘\\ \‘\\
o o e
a_g *\s\\ \‘
Bog g —— R S
o TS5
1.8
200M 1B 8B

Model size

Discussion

* How does memorizing transformers connect with other efficient
transformers?

* E.g., Sparse methods?

Discussion

* How do these type of models can help with abilities like ICL or Few-
shot learning?

