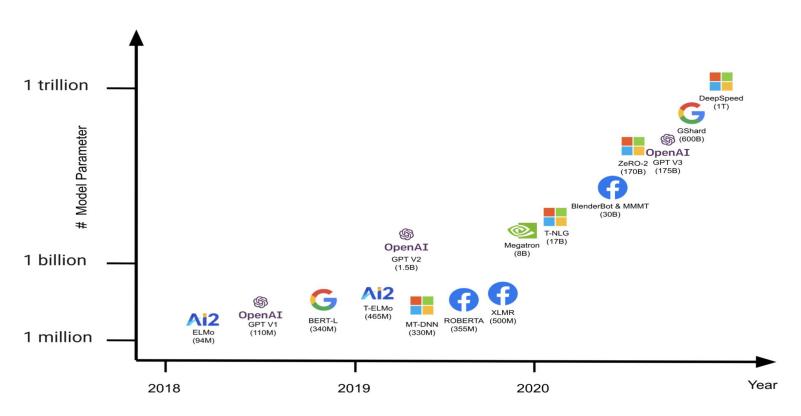
Efficient & Scalable NLP through Retrieval-Augmented Language Models

Scott Wen-tau Yih

Meta AI - FAIR

Language Model Pre-training: Ever bigger scale!



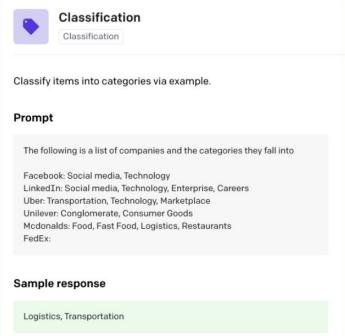
What is a language model (LM)?

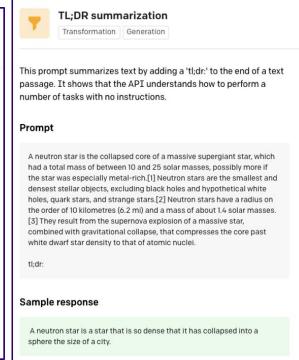
$$p(w_1, ..., w_n) = \prod_{i=1..n} p(w_i|w_1, ..., w_{i-1})$$

e.g. p(ELMo) and BERT are Sesame Street characters) = p(ELMo) x p(and | ELMo) x p(BERT | ELMo), and x ...

 $p(w_i|w_1,...,w_{i-1})$ is often a (recurrent) neural network

Not just bigger... Zero-shot learner!





This prompt creates a question + answer structure for answering questions based on existing knowledge.

Prompt

I am a highly intelligent question answering bot. If you ask me a question that is rooted in truth, I will give you the answer. If you ask me a question that is nonsense, trickery, or has no clear answer, I will respond with "Unknown".

- Q: What is human life expectancy in the United States?
- A: Human life expectancy in the United States is 78 years.
- Q: Who was president of the United States in 1955?
- A: Dwight D. Eisenhower was president of the United States in 1955.
- Q: Which party did he belong to?
- A: He belonged to the Republican Party.
- Q: What is the square root of banana?
- A: Unknown
- Q: How does a telescope work?
- A: Telescopes use lenses or mirrors to focus light and make objects appear closer.
- Q: Where were the 1992 Olympics held?
- A: The 1992 Olympics were held in Barcelona, Spain.
- Q: How many squigs are in a bonk?
- A: Unknown
- Q: Where is the Valley of Kings?
- A:

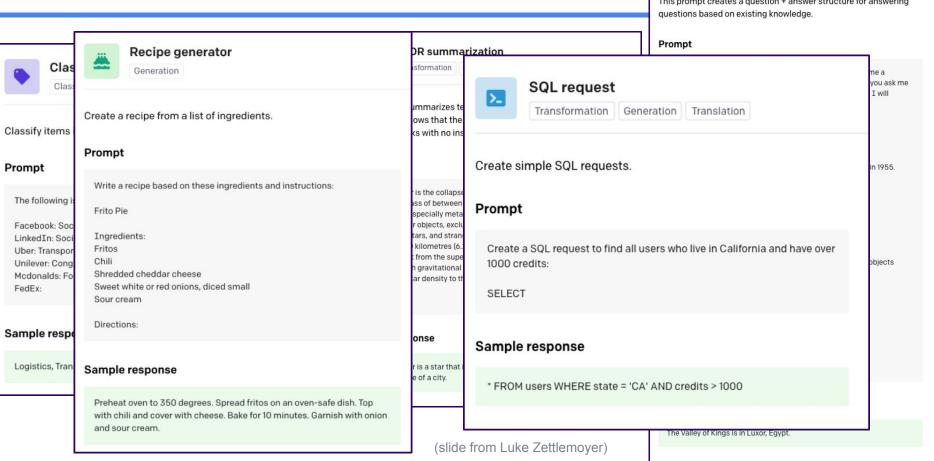
Sample response

The Valley of Kings is in Luxor, Egypt.

Not just bigger... Zero-shot learner!

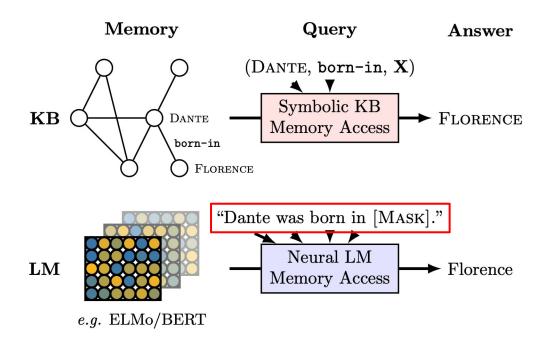


This prompt creates a question + answer structure for answering

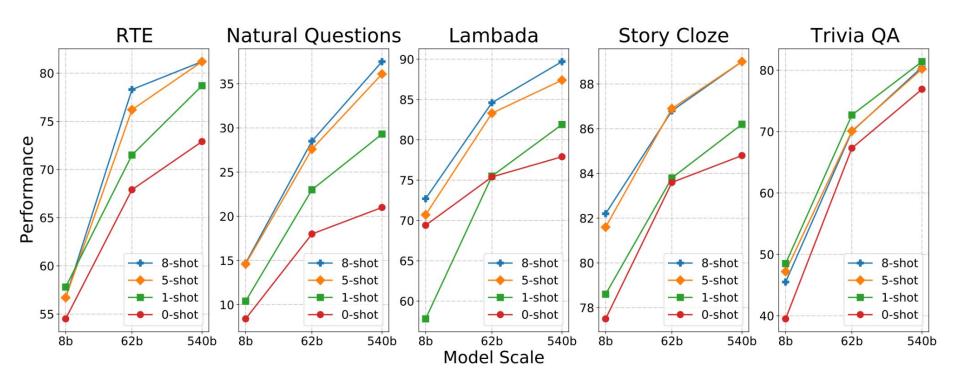


Knowledge in LM's Parameter Space

Petroni et al., Language Models as Knowledge Bases? In EMNLP-2019



More Parameters, More Knowledge?

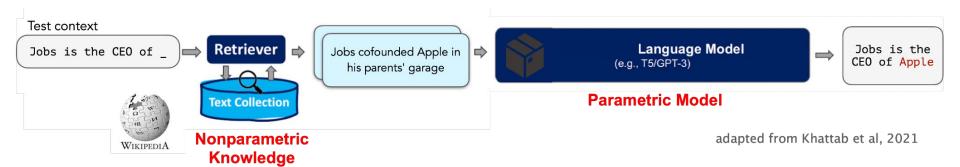


Better Large Language Model Training?

- Training large language models is expensive
 - GPT-3 175B: 355 years on one Tesla V100, ~\$4.6M (2020 numbers; source)
 - PaLM 540B: 842 years on one TPU v4 chip, ~\$17M (2022 numbers; source)
- Can we use an external knowledge store instead of cramming knowledge into parameters?
 - Smaller, core model has the basic capabilities
 - Retrieval component provides relevant knowledge at inference time

Retrieval-Augmented Language Models

Retrieval-augmented Language Models



Separating world knowledge information from LMs' parameters

Advantages of Retrieval-augmented LMs

- Parameter efficient
 - Knowledge is explicitly encoded in the datastore
 - Fewer model parameters are needed for memorization

Advantages of Retrieval-augmented LMs

- Parameter efficient
 - Knowledge is explicitly encoded in the datastore
 - Fewer model parameters are needed for memorization
- Less opaque; more interpretable
 - Easier to trace the knowledge source of the predictions

Advantages of Retrieval-augmented LMs

- Parameter efficient
 - Knowledge is explicitly encoded in the datastore
 - Fewer model parameters are needed for memorization
- Less opaque; more interpretable
 - Easier to trace the knowledge source of the predictions
- Easy to update knowledge
 - The datastore can be updated and expanded easily
 - No model retraining is needed

This Talk

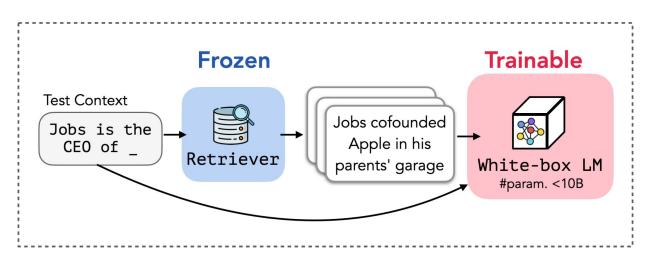
- REPLUG: Retrieval-Augmented Black-Box Language Models (<u>arXiv Link</u>)
 - Retrieval can help improve language models even in the "black-box" setting
- RA-CM3: Retrieval-Augmented Multimodal Language Modeling (<u>arXiv Link</u>)
 - Works on multimodal (text / image) as well

REPLUG: Retrieval-Augmented Black-Box Language Models

Weijia Shi, Sewon Min, Minjoon Seo, Michihiro Yasunaga, Rich James, Mike Lewis, Luke Zettlemoyer, Scott Yih

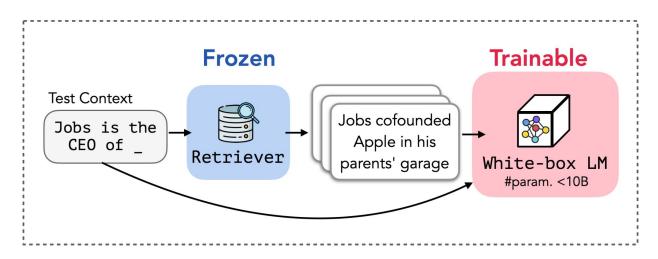
Previous Retrieval-Augmented LMs

Previous retrieval-augmented LMs (e.g., RETRO (Borgeaud, et al. 2022), RAG (Lewis, et al. 2020))



Previous Retrieval-Augmented LMs

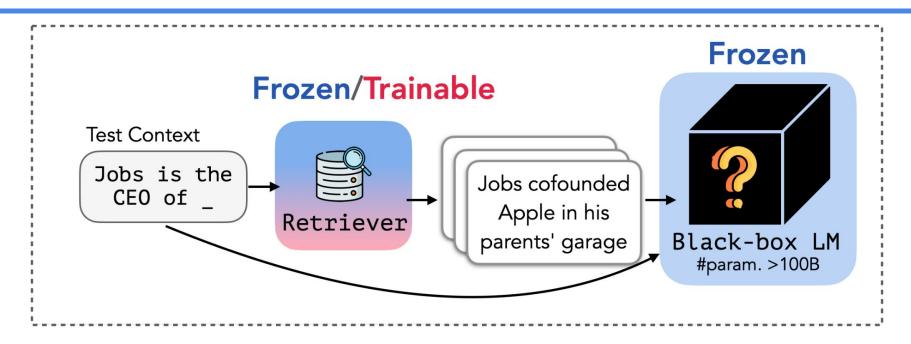
Previous retrieval-augmented LMs (e.g., RETRO (Borgeaud, et al. 2022), RAG (Lewis, et al. 2020))



Not suitable for large language models

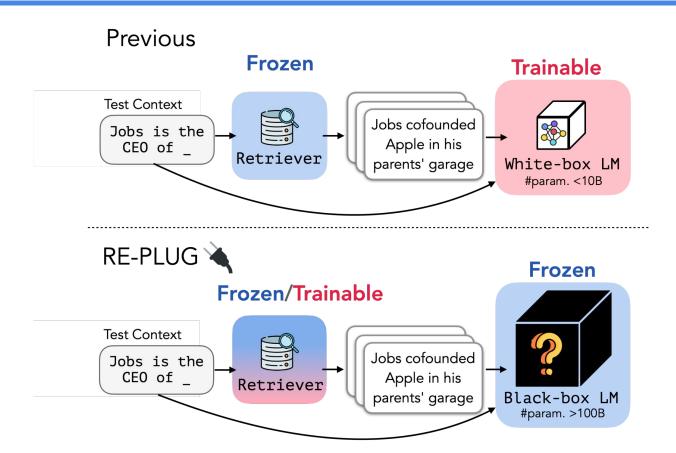
e.g., expensive to finetune or only accessible by APIs

Our Framework: REPLUG



- How to incorporate retrieved texts?
- How to train a better dense retriever for language modeling and downstream tasks?

Comparison: Previous vs. REPLUG



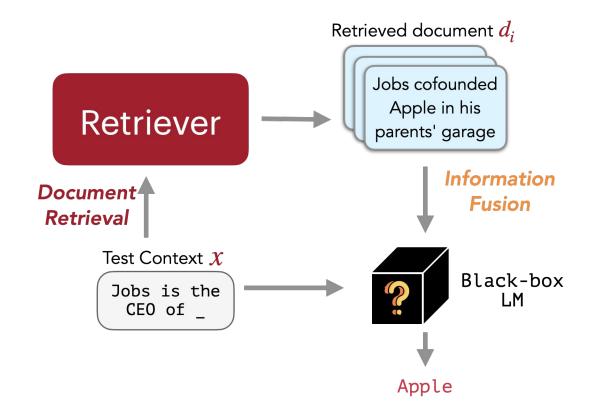
Our Method

REPLUG Inference

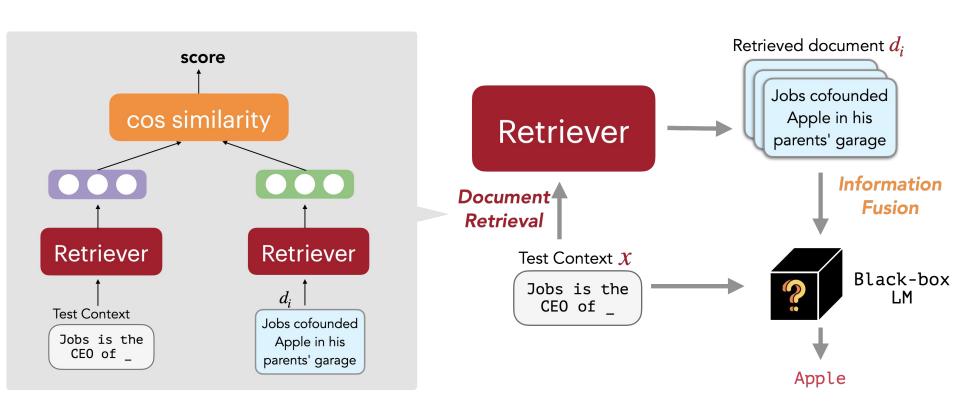
- 1. Retrieves a small set of relevant documents from an external corpus
- 2. Prepends each document separately to the input context
- 3. Ensembles LM output probabilities
- REPLUG LSR (LM-Supervised Retrieval): Training the dense retriever

REPLUG Inference

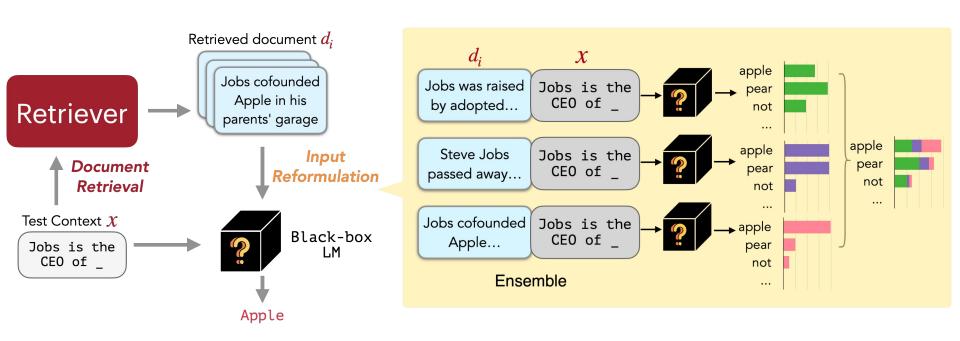
- Document retrieval
- 2. Information fusion



REPLUG Inference - Document Retrieval



REPLUG Inference - Information Fusion

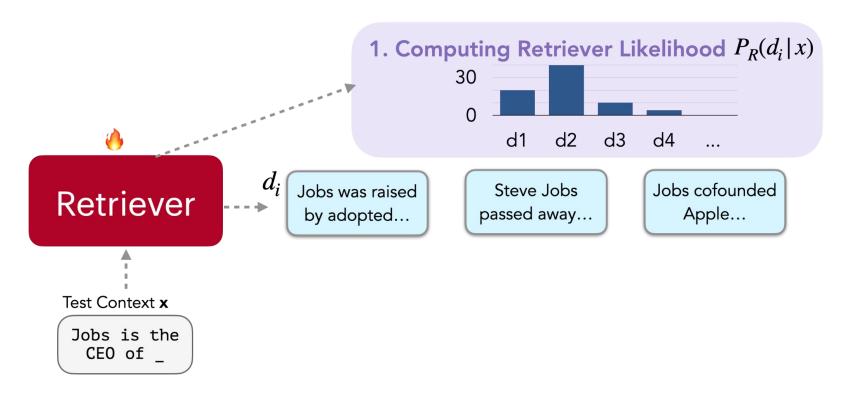


Our Method

- REPLUG Inference
- REPLUG LSR (LM-Supervised Retrieval): Training the dense retriever
 - Use the LM output as supervision signals for different inputs (context + retrieved document)
 - Train the retriever using the "labeled" data

REPLUG LSR Training

Step 1: Compute retriever likelihood



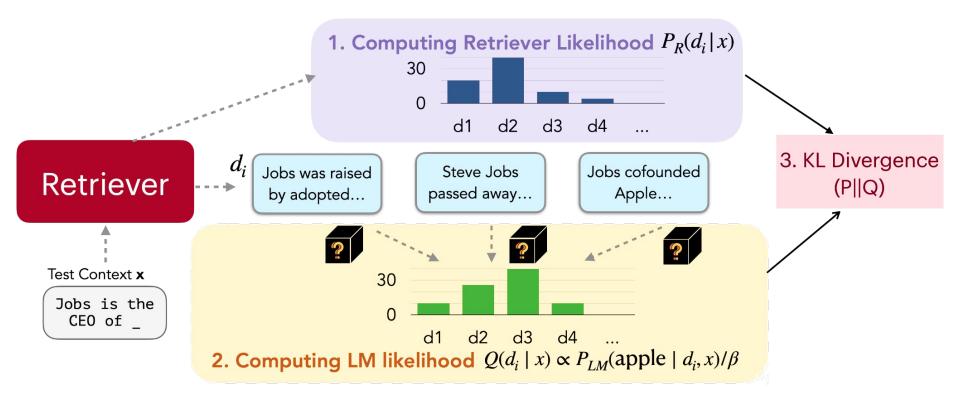
REPLUG LSR Training

Step 2: Compute LM likelihood



REPLUG LSR Training

Step 3: Minimize KL divergence (Update only the retriever parameters)



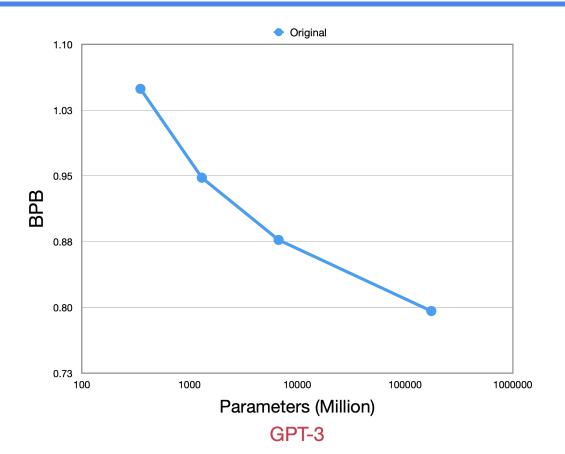
REPLUG: Retriever and Training Setup

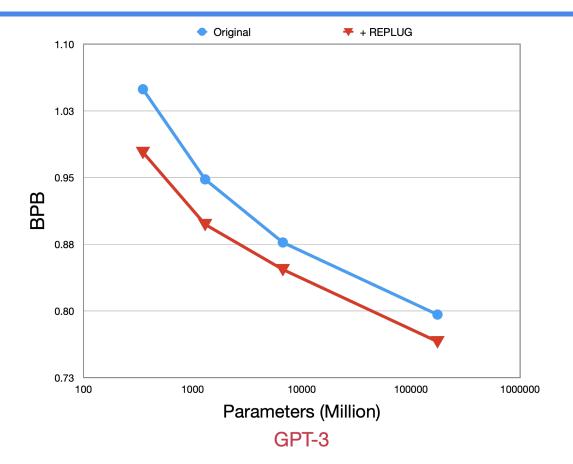
- REPLUG: using an off-the-shelf retriever, Contriever (Izacard et al., 2022)
- REPLUG LSR: a tuned retriever adapted to a black-box LM
 - Initialized with Contriever
 - Trained on the Pile with supervision signals provided by GPT-3 Curie

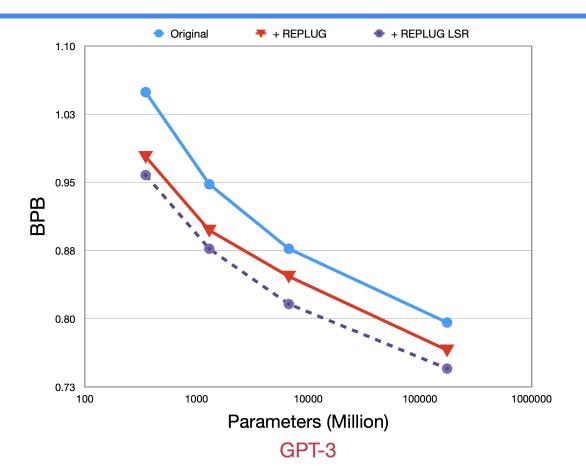
Experiments

- Language Modeling
- MMLU (Massive Multitask Language Understanding)
- Open-domain Question Answering

- Evaluation: the Pile test set
- Datastore: Subset of the Pile training data (367M documents of 128 tokens)

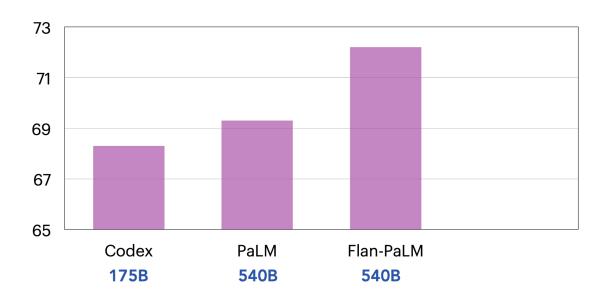






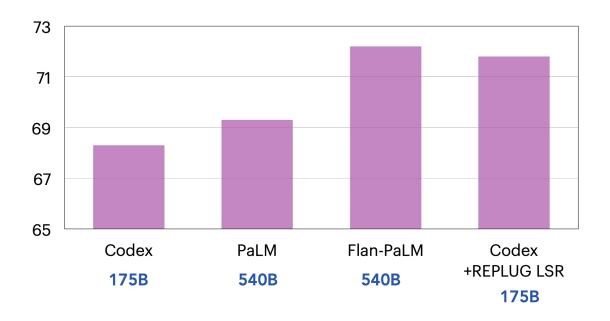
MMLU (Massive Multitask Language Understanding)

 A multiple-choice QA dataset covering exam questions from 57 tasks (e.g., Math, CS, Law, Psychology, etc.)

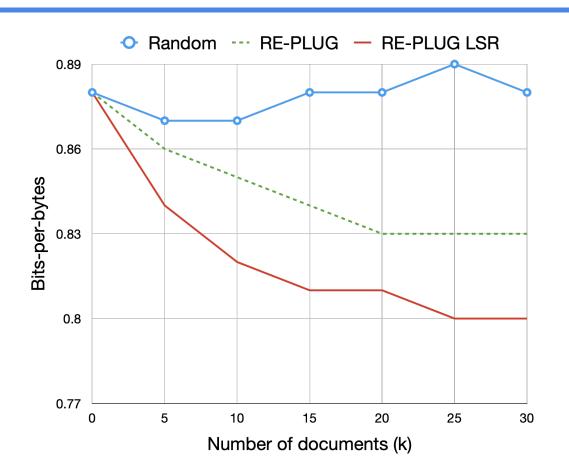


MMLU (Massive Multitask Language Understanding)

 A multiple-choice QA dataset covering exam questions from 57 tasks (e.g., Math, CS, Law, Psychology, etc.)



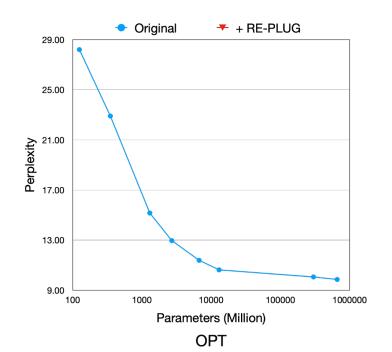
Observation: Random Documents Don't Help

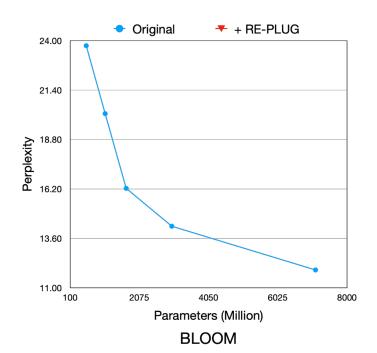


Observation: REPLUG Works on other LMs too

Evaluation: Wikitext-103 test set

Datastore: Wikitext-103 training set

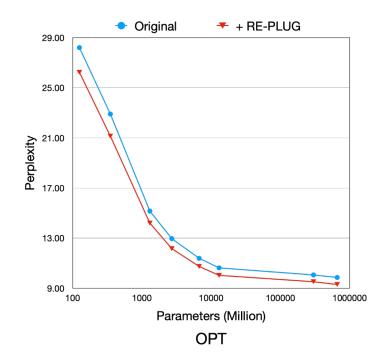


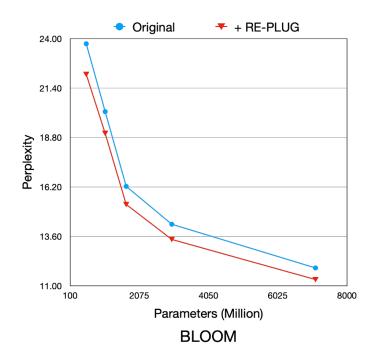


Observation: REPLUG Works on other LMs too

Evaluation: Wikitext-103 test set

Datastore: Wikitext-103 training set





Discussion / Questions

- What are other possible ways to incorporate retrieved data?
- Can there be a better query other than the input context?
- Does retrieval always help? If not, can we decide when to call retrieval?
- Any other ways to incorporate more retrieved data other than ensemble?
- What are other ways to use the LLM to provide supervision signals?
- If the LLM is not a complete blackbox, what will you do to improve this work?

Retrieval Augmented Multimodal Model Training

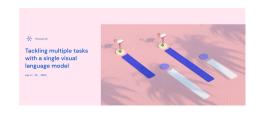
Michihiro Yasunaga, Armen Aghajanyan, Weijia Shi, Rich James, Jure Leskovec, Percy Liang, Mike Lewis, Luke Zettlemoyer, Scott Yih

Multimodal Models

TEXT PROMPT

an armchair in the shape of an avocado. . . .

AI-GENERATED IMAGES



Parti-350M Parti-750M Parti-3B Parti-20B

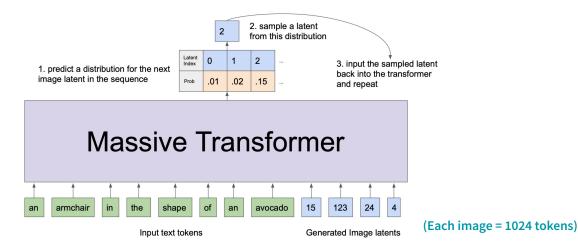
A portrait photo of a kangaroo wearing an orange hoodie and blue sunglasses standing on the grass in front of the Sydney Opera House holding a sign on the chest that says Welcome Friends!

Multimodal Models

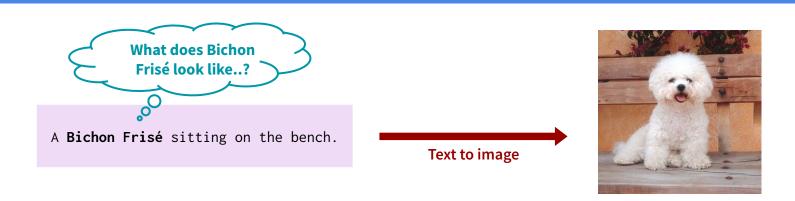
DALL•E, Parti (text → image; autoregressive)

DALL•E 2, StableDiffusion (text → image; diffusion)

Flamingo (image → text; autoregressive)

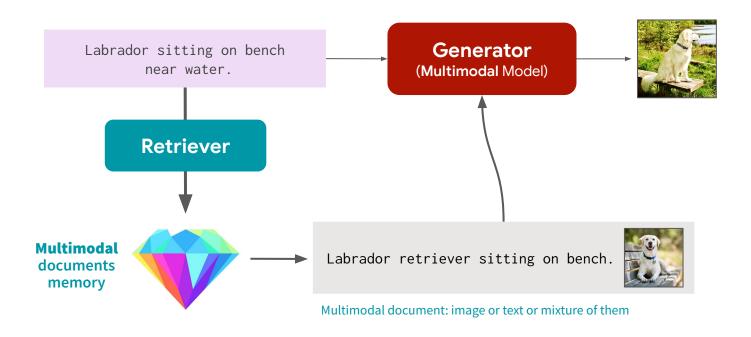


Multimodal models need world knowledge



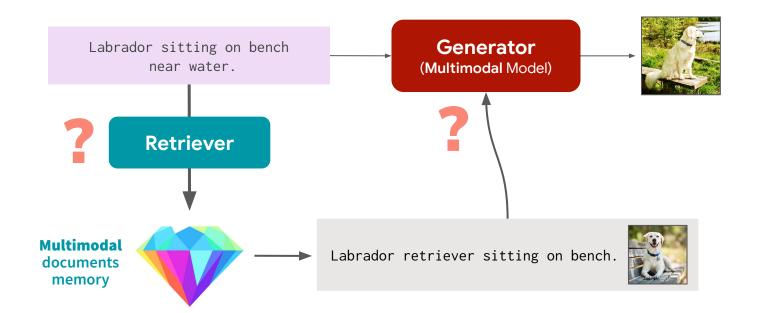
The Dragon and Tiger Pagodas next to fireworks.

Our Idea: Retrieval Augmented Multimodal Model



Challenges & Research Questions

- What is effective retrieval method in multimodal setting?
- How to incorporate multimodal docs into the generator?

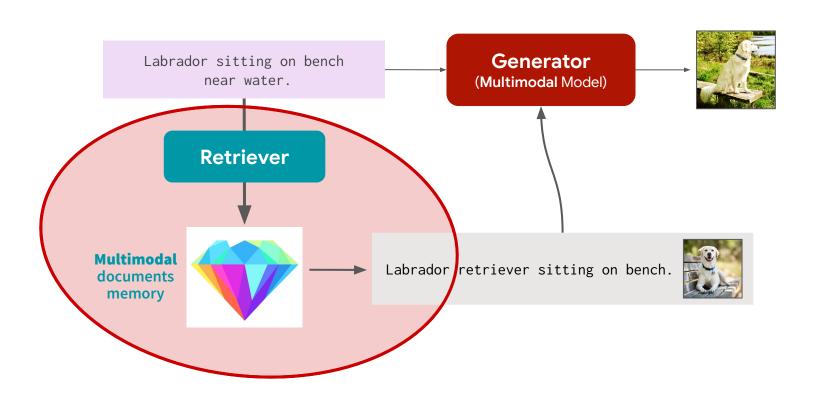


Retrieval Augmented Multimodal Model

Techniques

- Multimodal retrieval
 - Dense retriever with CLIP-based mix-modal encoder
 - Strategy for obtaining retrieved docs
- Multimodal retrieval-augmented generator
 - Prepend retrieved docs
 - Jointly train over retrieved docs and main doc

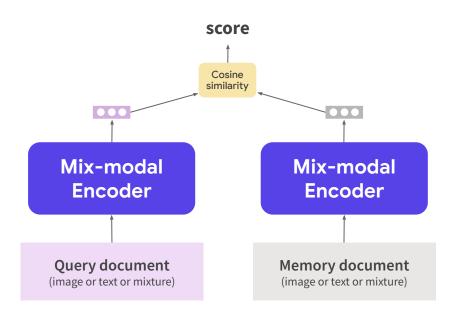
Multimodal Retrieval



Our Multimodal Retriever

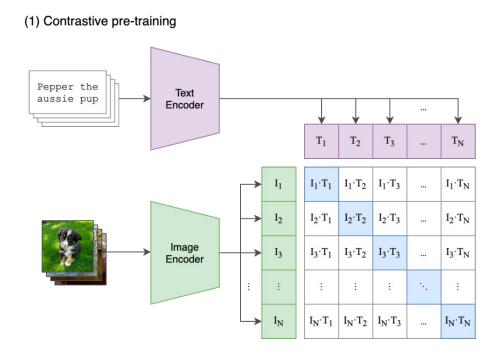
Dense Retriever with Mix-modal Encoder

 $f(query, memory) \rightarrow score$



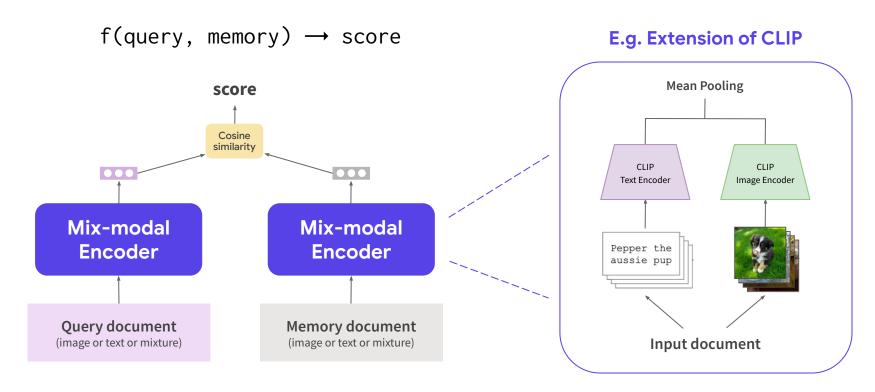
Background: CLIP

CLIP produces text embeddings and image embeddings in shared vector space

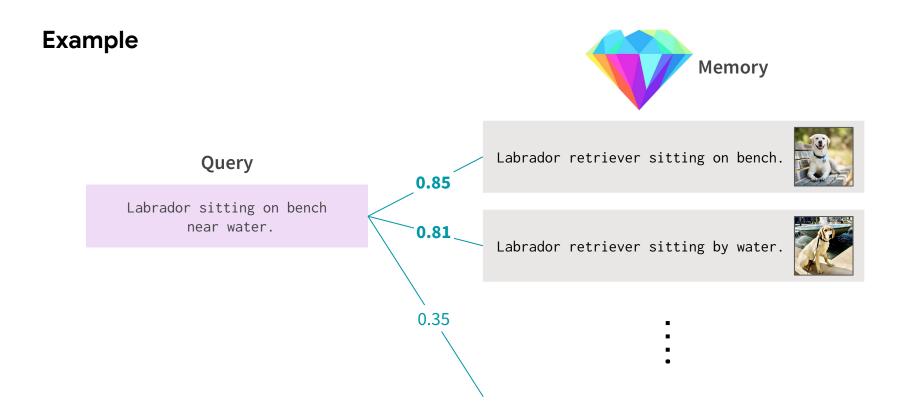


Our Multimodal Retriever

Dense Retriever with Mix-modal Encoder



Our Multimodal Retriever



Strategy for Obtaining Retrieved Documents

Relevance

The retrieved docs should be relevant to query

Cosine similarity score

Diversity (for training)

If simply take docs of top scores, may include duplicate images/text This can cause model to overfit or pick up repetitive decoding

ick up ic

Avoid redundant docs

Skip candidate doc if it is too similar to query or docs already retrieved

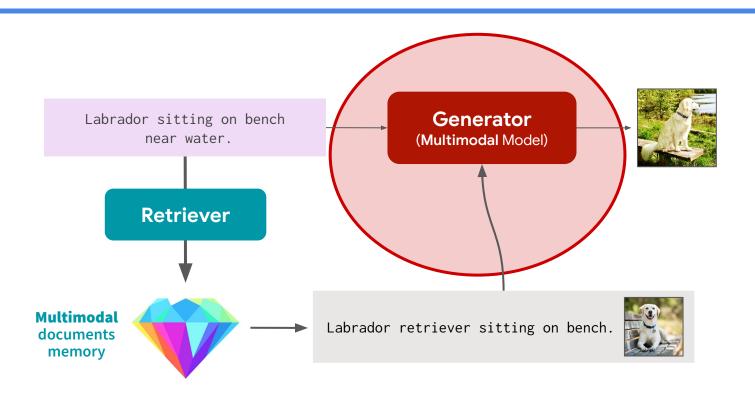
Query dropout

- Drop some tokens of query used in retrieval (e.g., 20% of tokens)
- This further increases diversity and serves as regularization

Diversity is crucial in multimodal setting

- Multimodal dataset often contains duplicate images across docs
- Each image takes many tokens (1024), so can significantly hurt model training

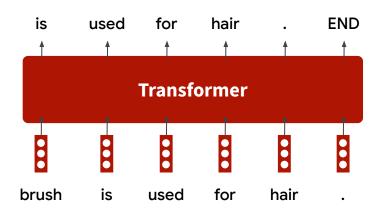
Multimodal Generator



Background: CLM and CM3

Causal language model (CLM)

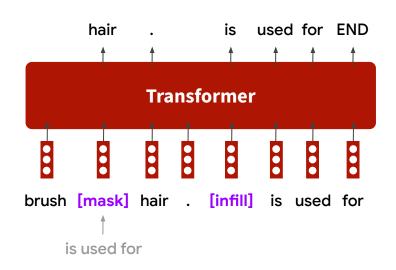
⇒ Inference: can do auto-regressive generation



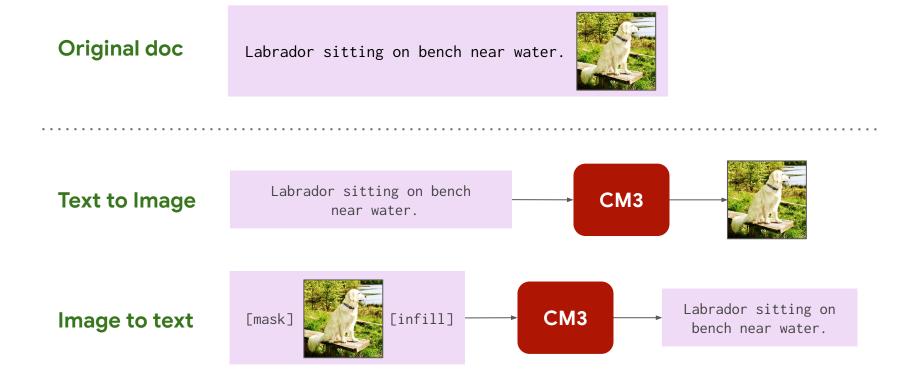
Causal masked language model (CM3)

⇒ Inference: can also do in-filling

If don't mask, same as CLM

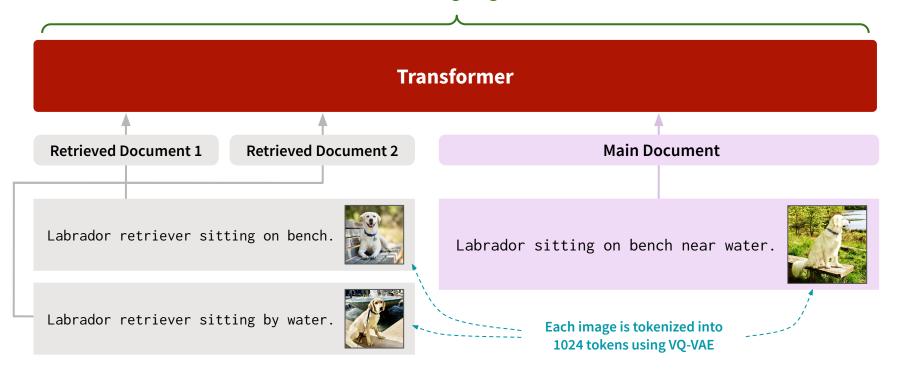


Background: CM3 can do text image



Our Generator: Retrieval Augmented CM3

Causal masked language model (CM3)



How to Train the Generator

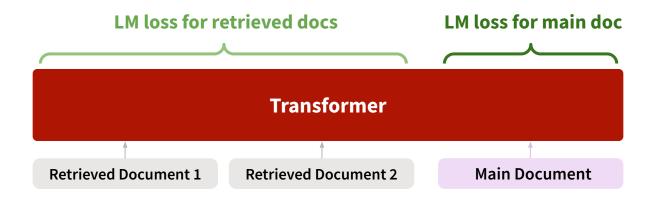
Loss = (LM loss for main doc) + $\alpha \cdot$ (LM loss for retrieved docs)

- Existing retrieval augmented LMs: $\alpha = 0$
- Our method: $\alpha > 0$ ($\alpha = 0.1$ works the best)

 α > 0 has effect like increasing batch size without extra forward compute, increasing training efficiency

 $\alpha > 0$ is crucial in multimodal setting

- Each image takes many tokens (1024)
- If $\alpha = 0$, we are throwing away a lot of compute



Text to Image

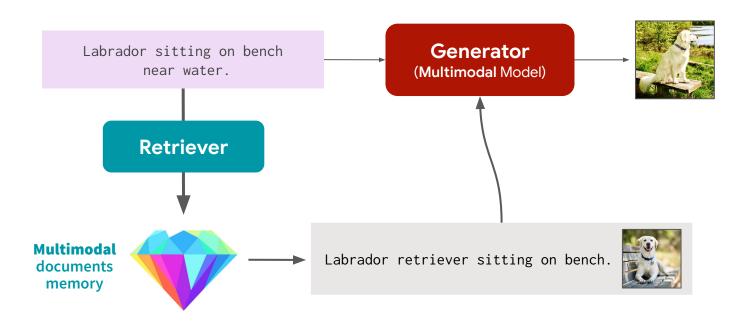
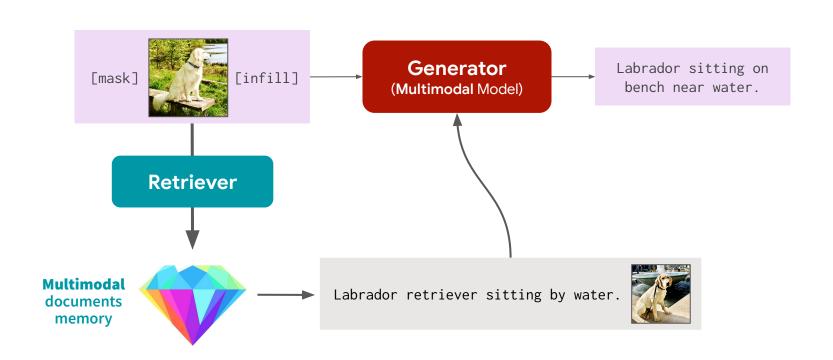
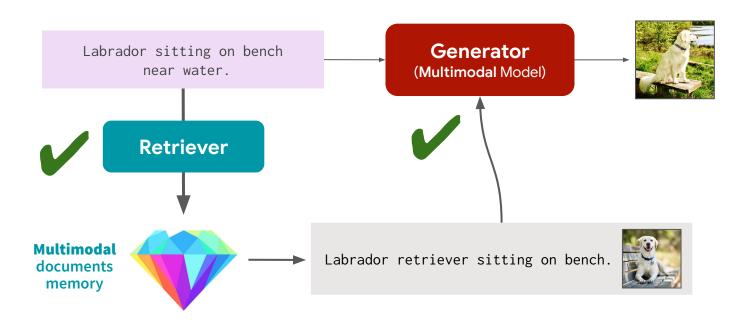


Image to Text



Retrieval Augmented Multimodal Model



Experiments

Train data

LAION (cleaned 150M image-text pairs)
 External memory: LAION

Evaluation

MSCOCO caption2image, image2caption.
 External memory: MSCOCO train set

Model

- Transformer with seq_length 4096 (up to 2 retrieved documents)
- 2.7B parameters trained for 5 days on 256 GPUs
- "Retrieval Augmented CM3 (RA-CM3)"

Baseline

Vanilla CM3 with no retrieval, same size, trained using the same amount of compute

Performance

MSCOCO caption to image generation

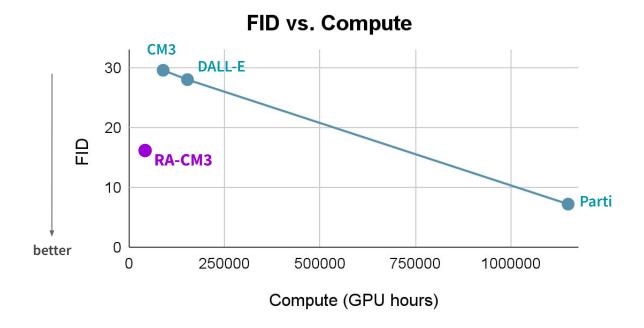
• RA-CM3 outperforms vanilla CM3 as well as DALL-E (which uses more params and images)

Model	Model type	#Train images	FID score (↓)
DALL-E (12B)	Autoregressive	250M	28
Parti (20B)	Autoregressive	6B	7.2
Stable Diffusion	Diffusion	1B	~12
DALL-E 2	Diffusion	650M	10.3
Vanilla CM3	Autoregressive	150M	25.8
RA-CM3	Autoregressive	150M	16.9

Performance

MSCOCO caption to image generation

• RA-CM3 is more compute efficient than non-retrieval models like DALL-E, CM3, Parti



Performance

MSCOCO image to caption generation

• RA-CM3 outperforms vanilla CM3 and Flamingo (equivalent size); competitive with Parti

Model	#Train images	CIDEr score (†)
Parti (20B)	6B	0.89
Flamingo (3B) 4-shot	2.5B	0.85
Flamingo (80B) 4-shot	2.5B	1.03
PaLI (17B)	10B	~1.4
Vanilla CM3	150M	0.72
RA-CM3	150M	0.89

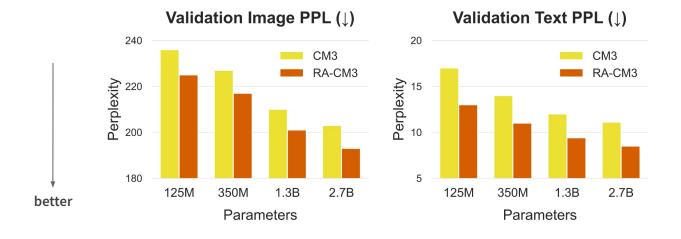
Scaling Laws

Setup

All models are trained for 2 days on 256 GPUs. Evaluation metric is validation perplexity

Observation

- Retrieval augmentation is consistently helpful across scales
- Larger models perform better (even under the same compute budget)



Ablation Study

Key factors in obtaining retrieved docs (relevance, diversity)

Ablation: Relevance	Val PPL (↓)
Random	130
CLIP-based retrieval (Final)	121

Ablation: Diversity	Val PPL (\big)
Simply take top docs	131
Avoid redundant docs	125
Avoid redundant docs + Query dropout (Final)	121

Comment

Diversity is important in the multimodal setting, because each image takes many tokens.
 Redundant image can significantly hurt model training (model learns to repeat stuff)

Ablation Study

Training objective

• Loss = (LM loss for main doc) + α • (LM loss for retrieved docs)

Loss function	Val PPL (\big)
α = 0	127
α = 1	126
$\alpha = 0.3$	123
α = 0.1 (Final)	121

 α > 0 has effect like increasing batch size without extra forward compute, increasing training efficiency.

But $\alpha = 1$ puts too much weight in modeling retrieved docs, hurting the PPL of the main doc.

Comment

• $\alpha > 0$ is especially effective in the multimodal setting, because each image takes many tokens. If $\alpha = 0$, we are throwing away a lot of compute that could be leveraged

Capabilities

- Knowledge-intensive image generation
- Image infilling & editing
- Controlled image generation
- One/few-shot image classification

RA-CM3 In-context

RA-CM3 outputs

Baseline outputs

(Vanilla CM3)

Ming Dynasty vase

A Ming Dynasty vase with orange flowers painted.

French flag

French flag waving on the moon's surface.

RA-CM3 In-context

RA-CM3 outputs

Baseline outputs

(Vanilla CM3)

An Armenian church during a sunny day.

Mount Rainier

People standing in front of the **Mount Rainier**.

RA-CM3 In-context

RA-CM3 outputs

Baseline outputs

(Vanilla CM3)

Japanese cherry

The Mount Rushmore with Japanese cherry trees in the front.

Oriental Pearl tower

The Oriental Pearl tower in oil painting.

RA-CM3 In-context

Callanish standing stones

RA-CM3 outputs

(Vanilla CM3)

Photo of the Callanish standing stones, fireworks in the sky.

Dragon and Tiger Pagodas

Photo of the Dragon and Tiger Pagodas, the sun is setting behind.

RA-CM3 In-context

Baseline outputs

(Vanilla CM3)

Washington monument

Photo of the Statue of Liberty standing next to the Washington monument.

Discussion / Questions

- What are other possible ways to incorporate retrieved data?
- Any ways to incorporate more retrieved data?
- Can there be a better query other than the input context?
- Does retrieval always help? If not, can we decide when to call retrieval?
- How do we reduce the retrieval data/index size?

Conclusion

Aspirational goal: A core model that fits in a single GPU, but can

- easily access additional, task-related knowledge via retrieval, and
- perform comparably to the largest language models available today

Key to success:

- Large quality data
- Efficient retrieval infrastructure
- Effective communication channels between retrieval and core LM models

Thank you!

Questions?