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Background - Prior work

• Learning word representations (word embeddings)
• A very simple recipe:
• Given a word in a sequence, predict its context words
• For example given the word turbines we want to predict wind
• How? Train a neural network that can assign high probability to the 

word wind

Wind turbines generate electricity



Background – Word representation learning

• First assume we have a fixed vocabulary of size V.
• We use 1-hot representations
• A vector where the entry to relevant word is 1 and everything else is 0
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Then the goal is to transform an input 1-hot 
representation (context word) to an output 
1-hot representation (target word)
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embeddings
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Background – Word representation learning

• Word2Vec (Mikolov et al., 2013)

Efficient algorithm + large scale training → high quality word vectors



ELMo: Deep contextualized word 
representations
Peters et al., 2018
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ELMo (Deep contextualized representations)

• Earlier word embedding methods (e.g., Word2Vec, GloVe, FastText) learn a single “static” 
vector for each word

• Problem: Static embeddings are not flexible and expressive enough

The children love to play outside in the park.

She went to see a play at the local theater.

They play the piano beautifully.

Information from context is necessary to capture the correct meaning of the word.
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[2.05, -1.57, 1.07, 1.37, 0.32]

[0.45, -0.26, 0.49, 2.37, -1.2]

[-0.37, 0.17, -0.36, 0.12, 0.18]



ELMo Building Blocks

• A recurrent neural network (RNN)

• The output of each step depends on the input to that step and 
previous state of the network.

• Convenient approach for modeling sequences

Fig from https://colah.github.io/posts/2015-08-Understanding-LSTMs/



ELMo Building Blocks

• LSTMs (Long Short Term Memory)
• A type of RNN that shows better performance and is stable in training
• Includes additional parameters

and gating mechanism to better control
the follow of information
• Allows it to “forget” irrelevant info

Fig from https://colah.github.io/posts/2015-08-Understanding-LSTMs/



ELMo Building Blocks

• Bidirectional LSTM
• Leverage both left-side and right-side context
• In practice shows better performance

Fig from https://arxiv.org/pdf/1810.04805.pdf



ELMo architecture
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ELMo architecture

• Bidirectional LSTM Language Model

A forward LM computes the probability of sequence by 
modeling the probability of token 𝑡! given left-side history

𝑝 𝑡", … , 𝑡! =)
!#"

$

𝑝(𝑡!|𝑡", … , 𝑡!%")

The output of each layer 𝑗 is a hidden representation ℎ!,'()

The top layer output ℎ!,(() is used to predict the next word

A backward LM computes the probability of sequence by modeling 
the probability of token 𝑡! given right-side history

𝑝 𝑡", … , 𝑡! =)
!#"

$

𝑝(𝑡!|𝑡!*", … , 𝑡$)

The output of each layer 𝑗 is a hidden representation ℎ!,'()

The top layer output ℎ!,'()is used to predict the previous word
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ELMo - Representations

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

Children                    love                        to                                 play

ELMo word 
embedding

= 𝜆.(              ) + 𝜆5(              ) +𝜆6(              )
Linearly mix 
representations from 
different layers

Best performance in 
practice



ELMo Usage

• At the time most model architectures were task specific
• And most architectures were based on LSTMs/RNNs or CNNs

The movie was boring 

Storyline was perfect

negative

positive

LSTM LSTM LSTM LSTM

The movie was perfect

negative positiveE.g., sentiment classification task



ELMo Usage

• Run the input through the pretrained 
Bidirectional LSTM Language Model to get 
ELMo embeddings

The movie                          was perfect

Bidirectional LSTM LM (BiLM)

ELMo
Embeddings
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LSTM LSTM LSTM LSTM

The movie                          was perfect

negative positive

The movie                          was perfect

Bidirectional LSTM LM (BiLM)

ELMo
Embeddings

Frozen Train



ELMo implication and results

• When ELMo representations added to downstream tasks they 
resulted in consistent improvements



ELMo implication and results



Questions?



ULMFit: Universal language 
model fine-tuning
Howard and Ruder, 2018



ULMFit

• Universal Language Model Fine-tuning for Text Classification
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• Takes inspiration from work in computer vision
• Computer vision models at the time were not trained from scratch 
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• Takes inspiration from work in computer vision
• Computer vision models at the time were not trained from scratch 

Pretrained 
Model

Fine-tuned 
Model

Downstream 
dataset

• Most existing NLP models at the time were being trained from scratch for 
downstream tasks
• Can we apply the same pretraining/finetuning paradigm to NLP?



Problem with approaches like ELMO

• One needs to train the task-specific model weights from scratch
• Concatenate the ELMo vectors to input
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Problem with approaches like ELMO

• One needs to train the task-specific model weights from scratch
• Concatenate the ELMo vectors to input

• Is there a way to use a “universal” model for all tasks
• Without the need for initializing parameters from scratch?

LSTM LSTM LSTM LSTM

The movie                          was perfect

negative positive

Task model parameters 
initialized from scratch
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ULMFit

• A Universal model: Works across different “classification” tasks
• With varying document size, and label type

• Uses a single architecture and training process
• Doesn’t require additional feature engineering



ULMFit – Three 
main stages

Language Model Pretraining

Target Task LM Finetuning

Target Task Classifier Finetuning



1- Language Model Pretraining

• Pretrain the model on a general language corpus
• Allows the model to generalize better
• Specially a useful step for tasks with small training data



2- Target Task LM Finetuning

• Finetune the LM on the task data
• Still the language modeling objective
• Two main ideas that made this work:

• Discriminative finetuning
• A new type of learning rate scheduler



Discriminative finetuning
• Instead of single learning rate for all layers, tune each layer with a different learning rate

• In practice they use a learning rate 𝜂 for last layer and 𝜂/2.6 for lower layers
• The goal is to prevent the base pretrained model to change too much, resulting in 

more robust finetuning



Learning rate scheduler
• Linear warmup with linear decay

• First gradually increase the learning rate (warmup step)
• Prevent the model to change too much too quickly

• Then gradually decrease the learning rate 
• To allow more fine-grained updates to the model as 

training progresses
• This was key point in making the finetuning work well



3- Target Task Classifier Finetuning

• Augment the LM with a linear classification layer
• These are task specific classifiers that are initialized from scratch
• They are a small subset of the whole network parameters



ULMFit – architecture
• They use bidirectional LSTM as their base model architecture



Results

Test error rates (%) , lower is better



Impact of different stages 



Impact of the LR schedule and discriminative finetuning



ULMFit

• One of the first attempts towards universal language models that can 
be used for a variety of tasks
• Eliminated the need for starting major model parameters from 

scratch
• Technical contributions such as learning rate schedule was key to 

make this work



BERT: Pre-training of Deep Bidirectional 
Transformers for Language Understanding



Background: OpenAI GPT (this is GPT1)

• GPT (Radford et al., 2018)
• Showed that transformers can replace LSTMs for language modeling
• They used a unidirectional left-to-right transformer
• They applied they same principles of ULMFit

• Pretraining and finetuning a single model (without the middle step of LM task 
finetuning)

• They update all parameters in finetuning
• A language model that supported generation tasks



BERT

• Argues that unidirectional training limits the power of LMs
• Can result in decreased performance on tasks such as QA 



BERT main ideas
1- Similar to UMLFit, have a universal LM that works for all tasks and that doesn’t need 
initializing from scratch
2- Similar to GPT, replace LSTM with Transformer
3- Make the transformer bidirectional by introducing a novel language modeling task
4- Eliminate the intermediate step of LM task finetuning of ULMFit
5- Follow tricks that were used in ULMFit in making finetuning robust
6- Scale up the pretraining



BERT model architecture

• BERT uses Transformer
• Two sizes: Base and Large

Base Large

Number of layers 12 24

Number of 
attention heads

12 16

Dimension of the 
input/output

768 1024

Total number of 
parameters

110M 340M



BERT input/output format

• Vocabulary
• Size 30,000
• Using WordPieces to tokenize the input text

• If a token is not in the vocabulary, it will be broken down to smaller “word-pieces” that 
are in vocabulary

Fig from: https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html



BERT input format

• BERT was designed to address a variety of tasks
• Single sentence classification (e.g., sentiment classification)
• Sentence pair classification 

• Question answering

Sentence 1 Sentence 2 Label (entail, contradict, 
neutral)

A man inspects the 
uniform of a figure

The man is sleeping. contradict



BERT input format

• Always append a special [CLS] token before the sentence and append 
the sentence with a [SEP] token
• If there are two sequences use a special [SEP] tokens between them
• To let the model better handle 2 sentence tasks, BERT uses an 

additional segment embedding that is added to the input



Pretraining objectives

• Masked Language Modeling
• This is designed to train the deep bidirectional representation
• ~15% of the input tokens are masked



Pretraining objectives

• Masking rate (15%):
• If mask too little: computationally expensive
• Too much masking: not enough info for the model to recover the masked 

tokens

• How are these chosen? Uniformly sampled
• Later work shows that more principled masking could benefit downstream 

task performance and result in faster training
PMI Masking (Levine et al., 2021) https://arxiv.org/pdf/2010.01825.pdf
SpanBERT (Joshi et al., 2020) https://arxiv.org/pdf/1907.10529.pdf

https://arxiv.org/pdf/2010.01825.pdf
https://arxiv.org/pdf/1907.10529.pdf


Details of their MLM masking

• Select 15% of the tokens randomly
• Take the position corresponding to these tokens
• 80% of the time replace the word at that position with [MASK]
• 10% of the time the word is replaced with a random word in vocab
• 10% of the time they keep it unchanged
• Use the original word at that position as target of the prediction
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• Why?
• Pretraining - finetuning mismatch

• [MASK] tokens are not present during finetuning



Details of their MLM masking

• Select 15% of the tokens randomly
• Take the position corresponding to these tokens
• 80% of the time replace the word at that position with [MASK]
• 10% of the time the word is replaced with a random word in vocab
• 10% of the time they keep it unchanged
• Use the original word at that position as target of the prediction

• Why?



Second pretraining objective

• Next Sentence Prediction
• Take a text that has two sentences
• Break down to two 
• 50% of the time replace the second sentence with a random sentence
• Ask the model to predict if the sentences are naturally after each other or not

[CLS] the cat sat on the mat [SEP] It looked very cozy [SEP]

[CLS] the cat sat on the mat [SEP] Tomorrow is 4th of July. [SEP]

YES

NO



Details of pretraining

• Larger pretraining data size compared with prior work
• Books corpus (~0.8B tokens)

• OpenAI GPT1 was trained on this only
• Wikipedia (2.5B tokens)

• Sequence length:
• 512 tokens

• Trained for 1M steps, batch size 256
• Batch size in terms of tokens: 256 ×512 = 128,000 tokens 

• Training time:
• base model: 16 TPU chips for 4 days   training cost today using cloud tpu: ~$1.3K 
• Large model: 64 TPU chips for 4 days   training cost today using cloud tpu : ~$5K 



Pretraining (summary)

• The two pretraining tasks 
are performed jointly



Finetuning
• BERT follows ULMFit

• Pretraining allows having a single model that can be finetuned quickly for different tasks
• Expands to a wider range of classification tasks

• NLI, QA, Sequence tagging



Finetuning
• Classification (single sentence or sentence pair)

• Take the representation at the [CLS] token
• Perform classification through a linear layer (also called classification head)

• Similar to ULMFit
• Initialized from scratch

[CLS] a man inspects the uniform of a figure [SEP] the man is sleeping [SEP]

Pretrained transformer (BERT)

Classification Layer

contradict entail
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Finetuning
• Classification (single sentence or sentence pair)

• Take the representation at the [CLS] token
• Perform classification through a linear layer (also called classification head)

• Similar to ULMFit
• Initialized from scratch

• How many new parameters does this introduce? (hidden size × num labels)

[CLS] a man inspects the uniform of a figure [SEP] the man is sleeping [SEP]

Pretrained transformer (BERT)

Classification Layer

contradict entail



Finetuning
• Question answering

• Classify if each span can be start or end of the answer span

[CLS] What is the name of the town? [SEP] … he was born in Spokane, WA   [SEP]

Pretrained transformer (BERT)

𝑖𝑠 𝑠𝑡𝑎𝑟𝑡? 𝑖𝑠 𝑒𝑛𝑑?



Some technical notes

• The pretraining learning rate was much larger 1𝑒 − 4
• Using the same learning rate schedule as ULMFit

• Linear warmup for 10K steps then linear decay

• Finetuning learning rate is typically 1𝑒 − 5 𝑡𝑜 5𝑒 − 5
• Finetuning also usually works better with learning rate warmup 



Results

• GLUE: Sentence/Sentence pair classification benchmark



Results - QA



How much bidirectional context matters?

• MLM converges 
slower
• But it outperforms 

left-to-right LM



Major impacts of BERT

• In order to have state-of-the-art performance on different tasks, there 
is no need for coming up with a novel model architecture
• End of task model architecture engineering

• As we will see in next lectures, larger scales, better approaches for 
language modeling and transfer learning are the key for future 
performance improvements



Questions?



Logistics - FQA

• How many papers in total do I need to present throughout the 
semester?



Logistics - FQA

• How many papers in total do I need to present throughout the 
semester?
• Depends on the number of students that will end up taking the class

• But it would be maximum 4 papers for the entire semester for each student
• Can be less if enrollment is high



Logistics - FAQ

• What if I am presenting but having trouble understanding some parts of the 
paper? Will I get penalized?



Logistics - FAQ

• What if I am presenting but having trouble understanding some parts of the 
paper? Will I get penalized?
• You are not the author of the paper. It is okay if you don’t completely understand every 

detail!
• We will try to understand the details in discussions
• Also feel free to reach out to ask questions



Logistics - FAQ

• What is the expected outcome of the project? Do you expect conference submissions?



Logistics - FAQ

• What is the expected outcome of the project? Do you expect conference submissions?
• Not at all. This is a class project and should have a more limited scope than a conference paper!
• Usually, good class projects have a small, focused contribution or study a focused problem, task, or 

phenomena
• For some cases, the project may show potential to become a conference submission

• But it is up to your team if you are interested in making it conference worthy
• Negative results are okay and won’t be penalized. The important thing is to provide sufficient analysis 

that can explain the results



Next time

GPT-2, Language Models are Unsupervised Multi-task Learners 
https://d4mucfpksywv.cloudfront.net/better-language-
models/language_models_are_unsupervised_multitask_learners.pdf

T5: Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer 
https://arxiv.org/pdf/1910.10683.pdf

Any volunteers?

https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/pdf/1910.10683.pdf

