
CPSC 670: Topics in Natural
Language Processing

SPRING 2023

Lecture 2: Transfer learning in NLP

Transfer learning in NLP
• The general transfer learning refers:

• Training a model to perform one task/dataset/set of tasks
• Then transfer to another task/dataset/set of tasks
• Often refers to training a language model then transferring to downstream tasks

Transfer learning in NLP

• The general transfer learning refers:
• Training a model to perform one task/dataset/set of tasks
• Then transfer to another task/dataset/set of tasks
• Often refers to training a language model then transferring to downstream tasks

Pretraining
corpus

Word2Vec
GloVe
ULMFit
ELMo
BERT
T5
…

Pretraining

Pretrained models

Transfer learning in NLP

• The general transfer learning refers:
• Training a model to perform one task/dataset/set of tasks
• Then transfer to another task/dataset/set of tasks
• Often refers to training a language model then transferring to downstream tasks

Pretraining
corpus

Word2Vec
GloVe
ULMFit
ELMo
BERT
T5
…

Pretraining

Pretrained models

Finetuning

QA

Classification

Translation

Summarization

Transfer learning in NLP
• Language Model Pretraining is among the most successful instances of transfer learning
• What is a Language Model?

Transfer learning in NLP
• Language Model Pretraining is among the most successful instances of transfer learning
• What is a Language Model?

• A language model is a probability distribution over sequences of words
• Given a sequence 𝑆 = 𝑤!, 𝑤", … . , 𝑤# an language model assigns a probability to the

whole sequence: 𝑃 𝑆 = 𝑃 𝑤!, … , 𝑤#
• We can have a conditional language model that predicts the probability of one

sequence given another sequence
• 𝑃 𝑆!|𝑆"

Transfer learning in NLP
• Language Model Pretraining is among the most successful instances of transfer learning
• What is a Language Model?

• A language model is a probability distribution over sequences of words
• Given a sequence 𝑆 = 𝑤!, 𝑤", … . , 𝑤# an language model assigns a probability to the

whole sequence: 𝑃 𝑆 = 𝑃 𝑤!, … , 𝑤#
• We can have a conditional language model that predicts the probability of one

sequence given another sequence
• 𝑃 𝑆!|𝑆"

Background - Prior work

• Learning word representations (word embeddings)
• How can we learn powerful word representations?

Background - Prior work

• Learning word representations (word embeddings)
• A very simple recipe:
• Given a word predict its context words

Wind turbines generate electricity

Background - Prior work

• Learning word representations (word embeddings)
• A very simple recipe:
• Given a word predict its context words
• For example given the word turbines we want to predict wind

Wind turbines generate electricity

Background - Prior work

• Learning word representations (word embeddings)
• A very simple recipe:
• Given a word in a sequence, predict its context words
• For example given the word turbines we want to predict wind
• How? Train a neural network that can assign high probability to the

word wind

Wind turbines generate electricity

Background – Word representation learning

• First assume we have a fixed vocabulary of size V.
• We use 1-hot representations
• A vector where the entry to relevant word is 1 and everything else is 0

Wind
turbines
generate
electricity

[1, 0, 0, 0, …, 0]
[0, 0, 1, 0, …, 0]
[0, 0, 0, 1, …, 0]
[0, 1, 0, 0, …, 0]

Wind turbine
Last
word in
vocab

Background – Word representation learning

• First assume we have a fixed vocabulary of size V.
• We use 1-hot representations
• A vector where the entry to relevant word is 1 and everything else is 0

Wind
turbines
generate
electricity

[1, 0, 0, 0, …, 0]
[0, 0, 1, 0, …, 0]
[0, 0, 0, 1, …, 0]
[0, 1, 0, 0, …, 0]

Wind turbine
Last
word in
vocab

Then the goal is to transform an input 1-hot
representation (context word) to an output
1-hot representation (target word)

Background – Word representation learning

[0, 0, 1, 0, …, 0]turbines

[1, 0, 0, 0, …, 0]wind

NN

Background – Word representation learning

[0, 0, 1, 0, …, 0]turbines

[1, 0, 0, 0, …, 0]wind

NN

[𝒙𝟏, 𝒙𝟐, 𝒙𝟑, … 𝒙𝒊, … , 𝒙𝑽]

[𝒉𝟏, 𝒉𝟐, … , 𝒉𝑵]

[𝒚𝟏, 𝒚𝟐, 𝒚𝟑, … 𝒚𝒋, … , 𝒚𝑽]

𝒙𝒊, 𝒚𝒋 ∈ {𝟎, 𝟏}
𝒉𝒌 ∈ ℝ

Background – Word representation learning

[𝒙𝟏, 𝒙𝟐, 𝒙𝟑, … 𝒙𝒊, … , 𝒙𝑽]

[𝒉𝟏, 𝒉𝟐, … , 𝒉𝑵]

[𝒚𝟏, 𝒚𝟐, 𝒚𝟑, … 𝒚𝒋, … , 𝒚𝑽]

𝒙𝒊, 𝒚𝒋 ∈ {𝟎, 𝟏}
𝒉𝒌 ∈ ℝ

Linear transformation 1
𝐡 = 𝐱)𝐖𝟏
𝐖 ∈ ℝ *×,

11

Background – Word representation learning

[𝒙𝟏, 𝒙𝟐, 𝒙𝟑, … 𝒙𝒊, … , 𝒙𝑽]

[𝒉𝟏, 𝒉𝟐, … , 𝒉𝑵]

[𝒚𝟏, 𝒚𝟐, 𝒚𝟑, … 𝒚𝒋, … , 𝒚𝑽]

𝒙𝒊, 𝒚𝒋 ∈ {𝟎, 𝟏}
𝒉𝒌 ∈ ℝ

Linear transformation 2
2𝒚 = 𝐡𝐖𝟐

𝐖𝟐 ∈ ℝ ,×*

Linear transformation 1
𝐡 = 𝐱)𝐖𝟏
𝐖 ∈ ℝ *×,

2

11

2

Background – Word representation learning

[𝒙𝟏, 𝒙𝟐, 𝒙𝟑, … 𝒙𝒊, … , 𝒙𝑽]

[𝒉𝟏, 𝒉𝟐, … , 𝒉𝑵]

[𝒚𝟏, 𝒚𝟐, 𝒚𝟑, … 𝒚𝒋, … , 𝒚𝑽]

𝒙𝒊, 𝒚𝒋 ∈ {𝟎, 𝟏}
𝒉𝒌 ∈ ℝ

Linear transformation 2
2𝒚 = 𝐡𝐖𝟐

𝐖𝟐 ∈ ℝ ,×*

Linear transformation 1
𝐡 = 𝐱)𝐖𝟏
𝐖 ∈ ℝ *×,

2

11

2

Train by minimizing 𝐥𝐨𝐬𝐬(2𝒚, 𝒚)

Background – Word representation learning

[𝒙𝟏, 𝒙𝟐, 𝒙𝟑, … 𝒙𝒊, … , 𝒙𝑽]

[𝒉𝟏, 𝒉𝟐, … , 𝒉𝑵]

[𝒚𝟏, 𝒚𝟐, 𝒚𝟑, … 𝒚𝒋, … , 𝒚𝑽]

𝒙𝒊, 𝒚𝒋 ∈ {𝟎, 𝟏}
𝒉𝒌 ∈ ℝ

Linear transformation 2
𝐲 = 𝐡𝐖𝟐

𝐖𝟐 ∈ ℝ ,×*

Linear transformation 1
𝐡 = 𝐱)𝐖𝟏
𝐖 ∈ ℝ *×,

2

11

2

Vector 𝐡 will be our word
embeddings

Train by minimizing 𝐥𝐨𝐬𝐬(2𝒚, 𝒚)

Background – Word representation learning

• Word2Vec (Mikolov et al., 2013)

Efficient algorithm + large scale training → high quality word vectors

ELMo: Deep contextualized word
representations
Peters et al., 2018

ELMo (Deep contextualized representations)

• Earlier word embedding methods (e.g., Word2Vec, GloVe, FastText) learn a single “static”
vector for each word

ELMo (Deep contextualized representations)

• Earlier word embedding methods (e.g., Word2Vec, GloVe, FastText) learn a single “static”
vector for each word

• Problem: Static embeddings are not flexible and expressive enough

ELMo (Deep contextualized representations)

• Earlier word embedding methods (e.g., Word2Vec, GloVe, FastText) learn a single “static”
vector for each word

• Problem: Static embeddings are not flexible and expressive enough

The children love to play outside in the park.

She went to see a play at the local theater.

They play the piano beautifully.

ELMo (Deep contextualized representations)

• Earlier word embedding methods (e.g., Word2Vec, GloVe, FastText) learn a single “static”
vector for each word

• Problem: Static embeddings are not flexible and expressive enough

The children love to play outside in the park.

She went to see a play at the local theater.

They play the piano beautifully.

Information from context is necessary to capture the correct meaning of the word.

ELMo (Peters, et al 2018)

• Tries to address the same exact problem
• Prior methods: Static embeddings
• ELMo: Context-dependent embeddings

• Word representations are a function of the entire sequence

ELMo (Peters, et al 2018)

• Tries to address the same exact problem
• Prior methods: Static embeddings
• ELMo: Context-dependent embeddings

• Word representations are a function of the entire sequence

The children love to play outside in the park.

She went to see a play at the local theater.

They play the piano beautifully.

[2.05, -1.57, 1.07, 1.37, 0.32]

[0.45, -0.26, 0.49, 2.37, -1.2]

[-0.37, 0.17, -0.36, 0.12, 0.18]

ELMo Building Blocks

• A recurrent neural network (RNN)

• The output of each step depends on the input to that step and
previous state of the network.

• Convenient approach for modeling sequences

Fig from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

ELMo Building Blocks

• LSTMs (Long Short Term Memory)
• A type of RNN that shows better performance and is stable in training
• Includes additional parameters

and gating mechanism to better control
the follow of information
• Allows it to “forget” irrelevant info

Fig from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

ELMo Building Blocks

• Bidirectional LSTM
• Leverage both left-side and right-side context
• In practice shows better performance

Fig from https://arxiv.org/pdf/1810.04805.pdf

ELMo architecture

• Bidirectional LSTM Language Model

A forward LM computes the probability of sequence by
modeling the probability of token 𝑡- given left-side history

𝑝 𝑡., … , 𝑡- =;
-/.

,

𝑝(𝑡-|𝑡., … , 𝑡-0.)

This is done by a Multi-Layer LSTM

The output of each layer 𝑗 is a hidden representation ℎ-,234

The top layer output ℎ-,334 is used to predict the next word

ELMo architecture

• Bidirectional LSTM Language Model

ELMo architecture

• Bidirectional LSTM Language Model

A forward LM computes the probability of sequence by
modeling the probability of token 𝑡- given left-side history

𝑝 𝑡., … , 𝑡- =;
-/.

,

𝑝(𝑡-|𝑡., … , 𝑡-0.)

This is done by a Multi-Layer LSTM

ELMo architecture

• Bidirectional LSTM Language Model

A forward LM computes the probability of sequence by
modeling the probability of token 𝑡- given left-side history

𝑝 𝑡., … , 𝑡- =;
-/.

,

𝑝(𝑡-|𝑡., … , 𝑡-0.)

This is done by a Multi-Layer LSTM

The output of each layer 𝑗 is a hidden representation ℎ-,234

ELMo architecture

• Bidirectional LSTM Language Model

A forward LM computes the probability of sequence by
modeling the probability of token 𝑡- given left-side history

𝑝 𝑡., … , 𝑡- =;
-/.

,

𝑝(𝑡-|𝑡., … , 𝑡-0.)

This is done by a Multi-Layer LSTM

The output of each layer 𝑗 is a hidden representation ℎ-,234

The top layer output ℎ-,334 is used to predict the next word

ELMo architecture

• Bidirectional LSTM Language Model

A forward LM computes the probability of sequence by
modeling the probability of token 𝑡! given left-side history

𝑝 𝑡", … , 𝑡! =)
!#"

$

𝑝(𝑡!|𝑡", … , 𝑡!%")

The output of each layer 𝑗 is a hidden representation ℎ!,'()

The top layer output ℎ!,(() is used to predict the next word

A backward LM computes the probability of sequence by modeling
the probability of token 𝑡! given right-side history

𝑝 𝑡", … , 𝑡! =)
!#"

$

𝑝(𝑡!|𝑡!*", … , 𝑡$)

The output of each layer 𝑗 is a hidden representation ℎ!,'()

The top layer output ℎ!,'()is used to predict the previous word

ELMo - Representations

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

Children love to play

ELMo - Representations

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

Children love to play

ELMo word
embedding

?? We want a single vector for each word

ELMo - Representations

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

Children love to play

ELMo word
embedding

= One option is to just take the last layer representation

ELMo - Representations

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

Children love to play

ELMo word
embedding

= 𝜆.() + 𝜆5() +𝜆6()
Linearly mix
representations from
different layers

Best performance in
practice

ELMo Usage

• At the time most model architectures were task specific
• And most architectures were based on LSTMs/RNNs or CNNs

The movie was boring

Storyline was perfect

negative

positive

LSTM LSTM LSTM LSTM

The movie was perfect

negative positiveE.g., sentiment classification task

ELMo Usage

• Run the input through the pretrained
Bidirectional LSTM Language Model to get
ELMo embeddings

The movie was perfect

Bidirectional LSTM LM (BiLM)

ELMo
Embeddings

ELMo Usage

• Simply concatenate input vectors with ELMo
vectors

• To use ELMo we freeze the weights of the BiLM
• Only finetune the 𝜆 parameters

• Fine-tune only the task-specific model (e.g.,
task LSTM)

LSTM LSTM LSTM LSTM

The movie was perfect

negative positive

The movie was perfect

Bidirectional LSTM LM (BiLM)

ELMo
Embeddings

ELMo Usage

• Simply concatenate input vectors with ELMo
vectors

• To use ELMo we freeze the weights of the BiLM
• Only finetune the 𝜆 parameters

• Fine-tune only the task-specific model (e.g.,
task LSTM)

LSTM LSTM LSTM LSTM

The movie was perfect

negative positive

LSTM LSTM LSTM LSTM

The movie was perfect

negative positive

The movie was perfect

Bidirectional LSTM LM (BiLM)

ELMo
Embeddings

ELMo Usage

• Simply concatenate input vectors with ELMo
vectors

• To use ELMo we freeze the weights of the BiLM
• Only finetune the 𝜆 parameters

• Fine-tune only the task-specific model (e.g.,
task LSTM)

LSTM LSTM LSTM LSTM

The movie was perfect

negative positive

LSTM LSTM LSTM LSTM

The movie was perfect

negative positive

The movie was perfect

Bidirectional LSTM LM (BiLM)

ELMo
Embeddings

Frozen Train

ELMo implication and results

• When ELMo representations added to downstream tasks they
resulted in consistent improvements

ELMo implication and results

Questions?

ULMFit: Universal language
model fine-tuning
Howard and Ruder, 2018

ULMFit

• Universal Language Model Fine-tuning for Text Classification

ULMFit

• Takes inspiration from work in computer vision
• Computer vision models at the time were not trained from scratch

Pretrained
Model

Fine-tuned
Model

Downstream
dataset

ULMFit

• Takes inspiration from work in computer vision
• Computer vision models at the time were not trained from scratch

Pretrained
Model

Fine-tuned
Model

Downstream
dataset

• Most existing NLP models at the time were being trained from scratch for
downstream tasks
• Can we apply the same pretraining/finetuning paradigm to NLP?

Problem with approaches like ELMO

• One needs to train the task-specific model weights from scratch
• Concatenate the ELMo vectors to input

LSTM LSTM LSTM LSTM

The movie was perfect

negative positive

Task model parameters
initialized from scratch

Problem with approaches like ELMO

• One needs to train the task-specific model weights from scratch
• Concatenate the ELMo vectors to input

• Is there a way to use a “universal” model for all tasks
• Without the need for initializing parameters from scratch?

LSTM LSTM LSTM LSTM

The movie was perfect

negative positive

Task model parameters
initialized from scratch

ULMFit

• A Universal model: Works across different “classification” tasks
• With varying document size, and label type

ULMFit

• A Universal model: Works across different “classification” tasks
• With varying document size, and label type

• Uses a single architecture and training process

ULMFit

• A Universal model: Works across different “classification” tasks
• With varying document size, and label type

• Uses a single architecture and training process
• Doesn’t require additional feature engineering

ULMFit – Three
main stages

Language Model Pretraining

Target Task LM Finetuning

Target Task Classifier Finetuning

1- Language Model Pretraining

• Pretrain the model on a general language corpus
• Allows the model to generalize better
• Specially a useful step for tasks with small training data

2- Target Task LM Finetuning

• Finetune the LM on the task data
• Still the language modeling objective
• Two main ideas that made this work:

• Discriminative finetuning
• A new type of learning rate scheduler

Discriminative finetuning
• Instead of single learning rate for all layers, tune each layer with a different learning rate

• In practice they use a learning rate 𝜂 for last layer and 𝜂/2.6 for lower layers
• The goal is to prevent the base pretrained model to change too much, resulting in

more robust finetuning

Learning rate scheduler
• Linear warmup with linear decay

• First gradually increase the learning rate (warmup step)
• Prevent the model to change too much too quickly

• Then gradually decrease the learning rate
• To allow more fine-grained updates to the model as

training progresses
• This was key point in making the finetuning work well

3- Target Task Classifier Finetuning

• Augment the LM with a linear classification layer
• These are task specific classifiers that are initialized from scratch
• They are a small subset of the whole network parameters

ULMFit – architecture
• They use bidirectional LSTM as their base model architecture

Results

Test error rates (%) , lower is better

Impact of different stages

Impact of the LR schedule and discriminative finetuning

ULMFit

• One of the first attempts towards universal language models that can
be used for a variety of tasks
• Eliminated the need for starting major model parameters from

scratch
• Technical contributions such as learning rate schedule was key to

make this work

BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding

Background: OpenAI GPT (this is GPT1)

• GPT (Radford et al., 2018)
• Showed that transformers can replace LSTMs for language modeling
• They used a unidirectional left-to-right transformer
• They applied they same principles of ULMFit

• Pretraining and finetuning a single model (without the middle step of LM task
finetuning)

• They update all parameters in finetuning
• A language model that supported generation tasks

BERT

• Argues that unidirectional training limits the power of LMs
• Can result in decreased performance on tasks such as QA

BERT main ideas
1- Similar to UMLFit, have a universal LM that works for all tasks and that doesn’t need
initializing from scratch
2- Similar to GPT, replace LSTM with Transformer
3- Make the transformer bidirectional by introducing a novel language modeling task
4- Eliminate the intermediate step of LM task finetuning of ULMFit
5- Follow tricks that were used in ULMFit in making finetuning robust
6- Scale up the pretraining

BERT model architecture

• BERT uses Transformer
• Two sizes: Base and Large

Base Large

Number of layers 12 24

Number of
attention heads

12 16

Dimension of the
input/output

768 1024

Total number of
parameters

110M 340M

BERT input/output format

• Vocabulary
• Size 30,000
• Using WordPieces to tokenize the input text

• If a token is not in the vocabulary, it will be broken down to smaller “word-pieces” that
are in vocabulary

Fig from: https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html

BERT input format

• BERT was designed to address a variety of tasks
• Single sentence classification (e.g., sentiment classification)
• Sentence pair classification

• Question answering

Sentence 1 Sentence 2 Label (entail, contradict,
neutral)

A man inspects the
uniform of a figure

The man is sleeping. contradict

BERT input format

• Always append a special [CLS] token before the sentence and append
the sentence with a [SEP] token
• If there are two sequences use a special [SEP] tokens between them
• To let the model better handle 2 sentence tasks, BERT uses an

additional segment embedding that is added to the input

Pretraining objectives

• Masked Language Modeling
• This is designed to train the deep bidirectional representation
• ~15% of the input tokens are masked

Pretraining objectives

• Masking rate (15%):
• If mask too little: computationally expensive
• Too much masking: not enough info for the model to recover the masked

tokens

• How are these chosen? Uniformly sampled
• Later work shows that more principled masking could benefit downstream

task performance and result in faster training
PMI Masking (Levine et al., 2021) https://arxiv.org/pdf/2010.01825.pdf
SpanBERT (Joshi et al., 2020) https://arxiv.org/pdf/1907.10529.pdf

https://arxiv.org/pdf/2010.01825.pdf
https://arxiv.org/pdf/1907.10529.pdf

Details of their MLM masking

• Select 15% of the tokens randomly
• Take the position corresponding to these tokens
• 80% of the time replace the word at that position with [MASK]
• 10% of the time the word is replaced with a random word in vocab
• 10% of the time they keep it unchanged
• Use the original word at that position as target of the prediction

Details of their MLM masking

• Select 15% of the tokens randomly
• Take the position corresponding to these tokens
• 80% of the time replace the word at that position with [MASK]
• 10% of the time the word is replaced with a random word in vocab
• 10% of the time they keep it unchanged
• Use the original word at that position as target of the prediction

• Why?
• Pretraining - finetuning mismatch

• [MASK] tokens are not present during finetuning

Details of their MLM masking

• Select 15% of the tokens randomly
• Take the position corresponding to these tokens
• 80% of the time replace the word at that position with [MASK]
• 10% of the time the word is replaced with a random word in vocab
• 10% of the time they keep it unchanged
• Use the original word at that position as target of the prediction

• Why?

Second pretraining objective

• Next Sentence Prediction
• Take a text that has two sentences
• Break down to two
• 50% of the time replace the second sentence with a random sentence
• Ask the model to predict if the sentences are naturally after each other or not

[CLS] the cat sat on the mat [SEP] It looked very cozy [SEP]

[CLS] the cat sat on the mat [SEP] Tomorrow is 4th of July. [SEP]

YES

NO

Details of pretraining

• Larger pretraining data size compared with prior work
• Books corpus (~0.8B tokens)

• OpenAI GPT1 was trained on this only
• Wikipedia (2.5B tokens)

• Sequence length:
• 512 tokens

• Trained for 1M steps, batch size 256
• Batch size in terms of tokens: 256 ×512 = 128,000 tokens

• Training time:
• base model: 16 TPU chips for 4 days training cost today using cloud tpu: ~$1.3K
• Large model: 64 TPU chips for 4 days training cost today using cloud tpu : ~$5K

Pretraining (summary)

• The two pretraining tasks
are performed jointly

Finetuning
• BERT follows ULMFit

• Pretraining allows having a single model that can be finetuned quickly for different tasks
• Expands to a wider range of classification tasks

• NLI, QA, Sequence tagging

Finetuning
• Classification (single sentence or sentence pair)

• Take the representation at the [CLS] token
• Perform classification through a linear layer (also called classification head)

• Similar to ULMFit
• Initialized from scratch

[CLS] a man inspects the uniform of a figure [SEP] the man is sleeping [SEP]

Pretrained transformer (BERT)

Classification Layer

contradict entail

Finetuning
• Classification (single sentence or sentence pair)

• Take the representation at the [CLS] token
• Perform classification through a linear layer (also called classification head)

• Similar to ULMFit
• Initialized from scratch

• How many new parameters does this introduce?

[CLS] a man inspects the uniform of a figure [SEP] the man is sleeping [SEP]

Pretrained transformer (BERT)

Classification Layer

contradict entail

Finetuning
• Classification (single sentence or sentence pair)

• Take the representation at the [CLS] token
• Perform classification through a linear layer (also called classification head)

• Similar to ULMFit
• Initialized from scratch

• How many new parameters does this introduce? (hidden size × num labels)

[CLS] a man inspects the uniform of a figure [SEP] the man is sleeping [SEP]

Pretrained transformer (BERT)

Classification Layer

contradict entail

Finetuning
• Question answering

• Classify if each span can be start or end of the answer span

[CLS] What is the name of the town? [SEP] … he was born in Spokane, WA [SEP]

Pretrained transformer (BERT)

𝑖𝑠 𝑠𝑡𝑎𝑟𝑡? 𝑖𝑠 𝑒𝑛𝑑?

Some technical notes

• The pretraining learning rate was much larger 1𝑒 − 4
• Using the same learning rate schedule as ULMFit

• Linear warmup for 10K steps then linear decay

• Finetuning learning rate is typically 1𝑒 − 5 𝑡𝑜 5𝑒 − 5
• Finetuning also usually works better with learning rate warmup

Results

• GLUE: Sentence/Sentence pair classification benchmark

Results - QA

How much bidirectional context matters?

• MLM converges
slower
• But it outperforms

left-to-right LM

Major impacts of BERT

• In order to have state-of-the-art performance on different tasks, there
is no need for coming up with a novel model architecture
• End of task model architecture engineering

• As we will see in next lectures, larger scales, better approaches for
language modeling and transfer learning are the key for future
performance improvements

Questions?

Logistics - FQA

• How many papers in total do I need to present throughout the
semester?

Logistics - FQA

• How many papers in total do I need to present throughout the
semester?
• Depends on the number of students that will end up taking the class

• But it would be maximum 4 papers for the entire semester for each student
• Can be less if enrollment is high

Logistics - FAQ

• What if I am presenting but having trouble understanding some parts of the
paper? Will I get penalized?

Logistics - FAQ

• What if I am presenting but having trouble understanding some parts of the
paper? Will I get penalized?
• You are not the author of the paper. It is okay if you don’t completely understand every

detail!
• We will try to understand the details in discussions
• Also feel free to reach out to ask questions

Logistics - FAQ

• What is the expected outcome of the project? Do you expect conference submissions?

Logistics - FAQ

• What is the expected outcome of the project? Do you expect conference submissions?
• Not at all. This is a class project and should have a more limited scope than a conference paper!
• Usually, good class projects have a small, focused contribution or study a focused problem, task, or

phenomena
• For some cases, the project may show potential to become a conference submission

• But it is up to your team if you are interested in making it conference worthy
• Negative results are okay and won’t be penalized. The important thing is to provide sufficient analysis

that can explain the results

Next time

GPT-2, Language Models are Unsupervised Multi-task Learners
https://d4mucfpksywv.cloudfront.net/better-language-
models/language_models_are_unsupervised_multitask_learners.pdf

T5: Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
https://arxiv.org/pdf/1910.10683.pdf

Any volunteers?

https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/pdf/1910.10683.pdf

