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557 Overview & Background

Lack of Generalization of SOTA.
Self-supervised learning.
Respond to BERT paper.
Zero-shot transfer.
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‘\ Architecture

- Transformer Decoder

- 12 ~48layers

- Masked Self-Attention

- Compute efficient

- Sampling

*
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@Objective

Language modeling objective

i.e. NLL, MLE objective output
“Predict the next word”

vs. MLM (BERT) -
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& Architecture

4 model variants.
Compare to GPT-1

- 10x parameters (XL model)

- Vocabulary: 40k — 50k

- Contextsize: 512 — 1024
- Batchsize: 64 — 512

- Layer norm position

- Weight initialization
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Model Dimensionality: 1280

Model Dimensionality: 1600

Parameters  Layers

dmodel

117M 12
345M 24
762M 36
1542M 48
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1024
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Table 2. Architecture hyperparameters for the 4 model sizes.



Data

- Data p I ays d b I g ro | e. ”I’m not the cleverest man in the world, but like they say in

French: Je ne suis pas un imbecile [I’m not a fool].

- We bTeXt In a now-deleted post from Aug. 16, Soheil Eid, Tory candidate
- . in the riding of Joliette, wrote in French: ”Mentez mentez,
-~ 8 million web pages scraped and filtered from reddit. il en restera toujours quelque chose,” which translates as,

”Lie lie and something will always remain.”

- (> 3"karma" upvote score

L . L. ) “I hate the word ‘perfume,”” Burr says. ‘It’s somewhat better

- wikipedia explicitly filtered out. - in French: ‘parfum.’
redd 'T If listened carefully at 29:55, a conversation can be heard
- 4OG B Of d a ta . between two guys in French: “-Comment on fait pour aller
de ’autre coté? -Quel autre coté?”, which means “- How

- Naturally occurring task-related data do you get to the other side? - What side?”.

If this sounds like a bit of a stretch, consider this ques-
tion in French: As-tu aller au cinéma?, or Did you go to
the movies?, which literally translates as Have-you to go to
movies/theater?

“Brevet Sans Garantie Du Gouvernement”, translated to
English: “Patented without government warranty”.

Table 1. Examples of naturally occurring demonstrations of En-
glish to French and French to English translation found throughout
the WebText training set.



Better Language Models
and Their Implications

We've trained a large-scale unsupervised language model which
generates coherent paragraphs of text, achieves state-of-the-art
performance on many language modeling benchmarks, and
performs rudimentary reading comprehension, machine
translation, question answering, and summarization—all without
task-specific training.

February 14, 2019
24 minute read




" Input Formulation (GPT-1)
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" Input Formulation (GPT-2)

NMT: “Translate to french,” <English text>, <French text>.
QA: “Answer the question,” <Document>, <Question>, <Answer>.

SUMM: <Document> “TL; DR:” <Summarization>

ANTHROP\C

Prompt Engineer and Librarian

SAN FRANCISCO, CA/ PRODUCT / FULL-TIME / HYBRID



I; . Experiments

- Zero-shot domain transfer (Language modeling tasks).
-  LAMBADA, CBT ...
- Zero-shot NLU tasks.
- MT,QA, CLS, WSC ...
- Misc.
- Underfit WebText.
- Model Memorization.



I; . Experiments

Language Models are Unsupervised Multitask Learners

LAMBADA LAMBADA CBT-CN CBT-NE WikiText2 PTB enwik8 text8 WikiTextl03 1BW

(PPL) (ACC) (ACC) (ACC) (PPL) (PPL) (BPB)  (BPC) (PPL) (PPL)
SOTA 99.8 59.23 85.7 82.3 39.14 46.54 0.99 1.08 18.3 21.8
117M 35.13 45.99 87.65 83.4 2941 65.85 1.16 1.17 37.50 75.20
345M 15.60 55.48 92.35 87.1 22.76 47.33 1.01 1.06 26.37 55.72
762M 10.87 60.12 93.45 88.0 19.93 40.31 0.97 1.02 22.05 44.575
1542M 8.63 63.24 93.30 89.05 18.34 35.76 0.93 0.98 17.48 42.16

Table 3. Zero-shot results on many datasets. No training or fine-tuning was performed for any of these results. PTB and WikiText-2
results are from (Gong et al., 2018). CBT results are from (Bajgar et al., 2016). LAMBADA accuracy result is from (Hoang et al., 2018)
and LAMBADA perplexity result is from (Grave et al., 2016). Other results are from (Dai et al., 2019).



I; . Experiments
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Figure 1. Zero-shot task performance of WebText LMs as a function of model size on many NLP tasks. Reading Comprehension results )
are on CoQA (Reddy et al., 2018), translation on WMT-14 Fr-En (Artetxe et al., 2017), summarization on CNN and Daily Mail (See et al., Fi rgure 3. Performance on the Winograd Schema Challenge as a
2017), and Question Answering on Natural Questions (Kwiatkowski et al., 2019). Section 3 contains detailed descriptions of each result. function of model capacity.



/. Results

Y

GPT-2 improved the then existing state-of-the-art for 7 out of 8 language modelling datasetsin

zero shot setting.
“Larger the better”
- Underfitting on WebText.
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- The performance increases in log-linear fashion as model scales.
- Building even larger language models would reduce the perplexity and make language

models better at natural language understanding.






L) Limitations

- Limited performance
o Prefix
- E.g. Summarization East Stroudsburg Stroudsburg... J

- Inefficiencies of uni-directional representations.
- !'giventhe model size, data, and compute
"The zero-shot performance of GPT-2 is still far from usable.” [ GPT-2 ]

- Memorization / Safety issues
- Verbatim memorization of private or IP information
- (Carlini et al. 2020): "We find that at least 0.1% percent of

its text generations contain long verbatim strings in its train set." Covporation Seabank bentre
g 3 3 ' Marine Parade Southport

( Memorized text ] l‘

.com




Thank you!



=~ Discussion

- Anything | missed? Corrections?
- Discussion points
- How do we understand and distill what's learned by the model?



