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What we learned from previous lecture

Transfer learning in NLP

* The general transfer learning refers:
* Training a model to perform one task/dataset/set of tasks
* Then transfer to another task/dataset/set of tasks
* Often refers to training a language model then transferring to downstream tasks
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Problem

It Is often possible to achieve better
performance simply by training a larger
model on a larger data set.

a great deal of recent work developing
transfer learning methodology for NLP

difficult to compare different algorithms,
tease apart the effects of new
contributions, and understand the space of
existing methods for transfer learning.



How?

unified framework that
converts all text-based
language problems Into a
text-to-text format



[ "translate English to German: That is good." ]\ TaSkS

[ "cola sentence: The

course is jumping well.” :
* Translation: easy to understand

o * Cola sentence: Corpus of Linguistic
on the grass. sentence2: A rhino Acceptability (CoLA) annotated for
is grazing in a field." acceptability
- ~ * Stsb sentencel sentence? This

"summarize: state authorities - -
dispatched emergency crews tuesday to dataset provides pairs of sentences

survey the damage after an onslaught and a score of their similarity
g of severe weather in mississippi.. e SummMmarize: easy to understand




All Tasks

o Sentence acceptability judgment (CoLA (Warstadt et al., 2018))
o Sentiment analysis (SST-2 (Socher et al., 2013))

o Paraphrasing/sentence similarity (MRPC (Dolan and Brockett, 2005), STS-B (Cer
et al., 2017), QQP (Iyer et al., 2017))

o Natural language inference (MNLI (Williams et al., 2017), QNLI (Rajpurkar et al.,
2016), RTE (Dagan et al., 2005), CB (De Marneff et al., 2019))

o Coreference resolution (WNLI and WSC (Levesque et al., 2012))
o Sentence completion (COPA (Roemmele et al., 2011))
e Word sense disambiguation (WIC (Pilehvar and Camacho-Collados, 2018))

o Question answering (MultiRC (Khashabi et al., 2018), ReCoRD (Zhang et al., 2018),
BoolQ (Clark et al., 2019))



Text-to-Text Transter Transformer (15)

["translate English to German: That is good."

"Das ist gut."]
course is jumping well."

[ "cola sentence: The

"not acceptable"]
"stsb sentencel: The rhino grazed

on the grass. sentence2: A rhino
is grazing in a field."
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"summarize: state authorities
dispatched emergency crews tuesday to
survey the damage after an onslaught

of severe weather in mississippi.."

"six people hospitalized after
a storm in attala county.”




Objectives

* unsupervised objective:
* a basic language modeling objective (causal language modeling objective)

« The task of predicting the token after a sequence of tokens is known as
causal language modeling.

* baseline denoising objective (also called “masked language modeling” )

* In a denoising objective, the model is trained to predict missing or otherwise
corrupted tokens in the input.



Benefits of T5

* This allows us to use the same model, loss function, hyperparameters, etc. across

our diverse set of tasks. It also provides a standard testbed for the methods
iIncluded in our empirical survey.

* This idea Is also mentioned in GPT2 ;" When a large language model is trained on

a sufficiently large and diverse dataset it is able to perform well across many
domains and datasets”

* For example, automatic summarization is done by feeding in a document followed
by the text “TL;DR:" (short for “too long, didn’ tread” ,a common
abbreviation) and then the summary is predicted via autoregressive decoding
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Proposed Model Structures
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Matrices representing different attention mask patterns
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Annotations

* Wherever a baseline configuration appears, we will mark it with a (as in the first row *
of Table 1). We also will boldface any score that is within two standard deviations of
the maximum (best) in a given experiment.




Model Structure Result

Architecture Objective  Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder  Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72  39.03 27.46
Enc-dec, 6 layers  Denoising P M/2  80.88 18.97 77.59 68.42 26.38  38.40  26.95
Language model  Denoising P M 74.70 17.93 61.14 55.02 25.09  35.28  25.86
Prefix LM Denoising P M 81.82 18.61 78.94 68.11 26.43 3798  27.39
Encoder-decoder LM 2P M 79.56 18.59 76.02 64.29 26.27  39.17  26.86
Enc-dec, shared LM P M 79.60 18.13 76.35 63.50 26.62  39.17  27.05
Enc-dec, 6 layers LM P M/2  T8.67 18.26 75.32 64.06 26.13 3842  26.89
Language model LM P M 73.78 17.54 53.81 56.51 25.23 3431  25.38
Prefix LM LM P M 79.68 17.84 76.87 64.86 26.28 37.51  26.76

Page 19 15



Structure Difference

* T5 I1s roughly equivalent to the original Transtformer proposed by
Vaswani et al. (2017)

* Removing the Layer Norm bias,
* placing the layer normalization outside the residual path,

* Using a different position embedding scheme.
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High-Level Approaches

* Prefix language modeling: left to right

* BERT-style: mask and recover

Original text
Thank you fef inviting me to your party [ast week.
Inputs

Thank you <X> me to your party <v> week.

Targets
* Deshuffling : shuffle the input and recover ~ <X> forinviting <v> last <z~ Baseline Objective
A
different
Objective Inputs Targets
Prefix language modeling Thank you for inviting me to your party last week .
BERT-style Devlin et al. (2018) Thank you <M> <M> me to your party apple week . (original text)

Deshuflling

party me for your to .

last fun you inviting week Thank  (original text)

We talked about it in last class
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The performance of these three objectives

Objective GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
Prefix language modeling 80.69 18.94 77.99 65.27 26.86 39.73 27.49
BERT-style (Devlin et al., 2018) 82.96 19.17 80.65 69.85 26.78 40.03 2741
Deshuflling 73.17 18.59 67.61 58.47 26.11  39.30  25.62

Table 4: Performance of the three disparate pre-training objectives described in Section 3.3.1.
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Corruption Strategies

Objective Inputs Targets

Prefix language modeling Thank you for inviting me to your party last week .

BERT-style Devlin et al. (2018) Thank you <M> <M> me to your party apple week . (original text)

Deshuflling party me for your to . last fun you inviting week Thank (original text)

MASS-style Song et al. (2019) Thank you <M> <M> me to your party <M> week . (original text)

[.i.d. noise, replace spans Thank you <X> me to your party <Y> week . <X> for inviting <Y> last <Z>

[.i.d. noise, drop tokens Thank you me to your party week . for inviting last

Random spans Thank you <X> to <Y> week . <X> for inviting me <Y> your party last <Z>

Simplifying the BERT Objective

consecutive spans of dropped-out tokens are replaced by a single sentinel token. Each sentinel token
Is assigned a token ID that is unique to the sequence.

Our choices to mask consecutive spans of tokens and only predict dropped-out

tokens were made to reduce the computational cost of pre-training.
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The performance

Objective GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
BERT-style (Devlin et al., 2018)  82.96 19.17 80.65 69.85 26.78 40.03 27.41
MASS-style (Song et al., 2019) 82.32 19.16 80.10 69.28 26.79  39.89 27.55
% Replace corrupted spans 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Drop corrupted tokens 84.44 19.31 80.52 [68.67] 27.07 39.76 27.82

Table 5: Comparison of variants of the BERT-style pre-training objective. In the first two
variants, the model is trained to reconstruct the original uncorrupted text segment.
In the latter two, the model only predicts the sequence of corrupted tokens.
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Varying the Corruption Rate

Corruption rate GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo

10% 82.82 19.00 80.38 69.55 26.87 39.28 27.44
* 15% 83.28 19.24 80.88 71.36 26.98 39.82 27.65
25% 83.00 19.54 80.96 70.48 27.04 3983 27.47
50% 81.27 19.32 79.80 70.33 27.01 3990 2749

Table 6: Performance of the i.i.d. corruption objective with different corruption rates.

The training data generator My~ Y51 find the number familiar?

chooses 15% of the token positions at random for

prediction. If the i-th token is chosen, we replace B E R
the 2-th token with (1) the [MASK] token 80% of

the time (2) a random token 10% of the time (3)

the unchanged i-th token 10% of the time. Then,

T; will be used to predict the original token with

cross entropy loss. We compare variations of this

procedure in Appendix C.2.
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Corrupting
SPans

For example, If we are processing a sequence of
500 tokens and we have specified that 15% of
tokens should be corrupted and that there
should be 25 total spans, then the total number
of corrupted tokens would be

500x 0.15=75
and the average span length would be
o255 —48
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Corrupting Spans

Span length GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Baseline (i.i.d.) 83.28 19.24 80.88 71.36 26.98 39.82 27.65
2 83.54 19.39 82.09 72.20 26.76 3999 27.63
3 83.49 19.62 81.84 72.53 26.86 39.65 27.62
5) 83.40 19.24 82.05 72.23 26.88 3940 27.53
10 82.85 19.33 81.84 70.44 26.79 3949 27.69
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Encoder-Decoder Structure
BERT-style Corruption
Method

Replace Span corruption
strategy

15 % corruption rate

Corrupted span of length 3
28




-y
V4 N\
* Colossal Clean Crawled Corpus (C4) \

* C4 was designed to be able to
create extremely large pre-training
data sets.

* The access to so much data allows
us to pre-train our models without
repeating examples.
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Question

Whether repeating examples during
pre-training would be helpful or
harmful to downstream performance?




Measuring the effect of repeating data during pre-trainin

Number of tokens Repeats GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo

235 <k Full data set 0 83.28 19.24 80.88 71.36 26.98 39.82 27.65
229 64 82.87 19.19 80.97 72.03 26.83 39.74 27.63
235 . 227 256 82.62 19.20 79.78 69.97 27.02 39.71 27.33
225 1,024 79.55 18.57 76.27 64.76 26.38  39.56  26.80
223 4,096 76.34 18.33 70.92 59.29 26.37 38.84  25.81

Table 9: Measuring the effect of repeating data during pre-training. In these experiments,
we only use the first N tokens from C4 (with varying values of N shown in the
first column) but still pre-train over 23> tokens. This results in the data set being
repeated over the course of pre-training (with the number of repeats for each
experiment shown in the second column), which may result in memorization (see
Figure 6).



Fvidence of the model begins to memorize the pre-training data set.
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These effects are limited when the pre-training
data set is repeated only 64 times. =2

Some amount of repetition of pre-training data
might not be harmful.

However, given that additional pre-training can
be beneficial and that obtaining additional
unlabeled data is cheap and easy, we suggest
using large pre-training data sets whenever
possible.

“We also note that this effect may be more
pronounced for larger model sizes, I.e. a bigger
model may be more prone to overfitting to a
smaller pre-training data set.”



Training



Training Strategy

“adapter layers”

* Adapter layers are additional dense-RelLU-
dense blocks that are added after each of
the preexisting feed-forward networks in
each block of the Transformer.

“gradual unfreezing”

* more and more of the model” s
parameters are fine-tuned over time.



Multi-task Learning

* We relax this goal somewhat and instead investigate
methods for training on multiple tasks at once in order
to eventually produce separate parameter settings that
perform well on each individual task.

* Try to compare this unsupervised learning result and
supervised learning result.
* Equal mixing
* Examples-proportional mixing
* Temperature-scaled mixing

Page 31-32
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Multi-task Learning

“The primary concern in multi-task learning is setting the proportion of each task to
train on. We ultimately did not find a strategy for setting mixing proportions that
matched the performance of the basic approach of unsupervised pre-training
followed by supervised fine-tuning. However, we found that fine-tuning after pre-
training on a mixture of tasks produced comparable performance to unsupervised
pre-training.”

--page 42



Scaling

* Using a bigger model,

* training the model for more steps

* ensembling.

Scaling strategy GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Baseline 83.28 19.24 80.88 71.36 26.98  39.82  27.65
1x size, 4x training steps 85.33 19.33 82.45 74.72 27.08 40.66  27.93
1 x size, 4x batch size 84.60 19.42 82.52 74.64 27.07  40.60  27.84
2X size, 2X training steps 86.18 19.66 84.18 77.18 27.52 41.03 28.19
4x size, 1x training steps 85.91 19.73 83.86 78.04 2747 40.71  28.10
4x ensembled 84.77 20.10 83.09 71.74 28.05 40.53 28.57
4x ensembled, fine-tune only  84.05 19.57 82.36 71.55 27.55  40.22  28.09
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Training
detail (In
case
SOMEeOoNE
asks)

Standard maximum likelihood, I.e.

using teacher torcing (Williams and
Zipser, 1989)

Cross-entropy loss

AdaFactor (Shazeer and Stern, 2018).
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Prepared Question 1:

* STS-B is a regression task where the goal is to predict a similarity score between 1
and 5.

* How could we translate this task to text?



Prepared Answer

* We found that most of these scores were annotated in increments of 0.2, so we
simply rounded any score to the nearest increment of 0.2 and converted the result
to a literal string representation of the number (e.g. the floating-point value 2.57
would be mapped to the string  “2.6" ).

* At test time, If the model outputs a string corresponding to a number between 1
and 5, we convert it to a floating-point value; otherwise, we treat the model’ s
prediction as incorrect. This effectively recasts the STS-B regression problem as a
21-class classification problem.



Prepared Question 2:

* How can we use “Cross Entropy” as the loss for the text generating task? Isn’ t
word the string?



Prepared Answer 2.

* “Thank you for inviting me to your party last week .” Note that all of our
objectives process tokenized text. For this particular sentence, all words were
mapped to a single token by our vocabulary. We write

* (original text) as a target to denote that the model is tasked with reconstructing the
entire input text. <M> denotes a shared mask token and <X> , <Y> | and </>
denote sentinel tokens that are assigned unique token IDs. The BERT-style objective
(second row) includes a corruption where some tokens are replaced by a random
token ID.



Prepared Question 3:

* How do the model know when to stop, like how many words there should be in the
answer?



Appendix: Fine-tune Result

Fine-tuning method GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% All parameters 83.28 19.24 80.88 71.36 2698 39.82 27.65
Adapter layers, d = 32 80.52 15.08 79.32 60.40 13.84 17.88 15.54
Adapter layers, d = 128 81.51 16.62 79.47 63.03 19.83  27.50  22.63
Adapter layers, d = 512 81.54 17.78 79.18 64.30 23.45 33.98  25.81
Adapter layers, d = 2048  81.51 16.62 79.47 63.03 19.83  27.50  22.63
Gradual unfreezing 82.50 18.95 79.17 70.79 26.71  39.02  26.93

Table 10: Comparison of different alternative fine-tuning methods that only update a subset
of the model’s parameters. For adapter layers, d refers to the inner dimensionality
of the adapters.
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