
Scaling Laws for Neural 
Language Models
Ruixiao Wang
Jan 31, 2023



A study on language model performance 

Cross entropy loss, Transformer architecture

Dataset: WebText2, vocabulary size = 50257



Summary

The test loss scales as a power-law with model size, dataset size, and the amount of compute used 
for training, with some trends spanning more than seven orders of magnitude.

https://en.wikipedia.org/wiki/Power_law


Experiment

A variety of models have been trained with different factors including:

● Model size (N): ranging in size from 768 to 1.5 billion non-embedding parameters.

● Dataset size (D): ranging from 22 million to 23 billion tokens.

● Model shape: including depth, width, attention heads, and feed-forward dimension.

● Context length: 1024 for most runs, with some experiments with shorter contexts.

● Batch size: 2^19 for most runs, with some variations to measure the critical batch size. Training at the 

critical batch size provides a roughly optimal compromise between time and compute efficiency.



Key Findings

● Performance depends strongly on scale, weakly on model shape
● Smooth power laws
● Universality of overfitting
● Universality of training
● Transfer improves with test performance
● Sample efficiency
● Convergence is inefficient
● Optimal batch size



Notations



1. Performance depends strongly on scale, weakly on model shape

Scale: 

● the number of model parameters N (excluding embeddings)
● the size of the dataset D
● the amount of compute C used for training

Shape:

● Depth
● width
● number of self-attention heads
● feed-forward dimension



Model Shape

nlayer : number of layers, 

dmodel: dimension of the residual stream, 

dff: dimension of the intermediate feed-forward layer

nheads: number of attention heads per layer

Train models with fixed size while varying a single hyperparameter. 

This was simplest for the case of nheads. When varying nlayer, we simultaneously varied dmodel while keeping N fixed. 
Similarly, to vary dff at fixed model size we also simultaneously varied the dmodel parameter,





Model Shape

nlayer : number of layers, dmodel: dimension of the residual stream, dff: dimension of the intermediate feed-forward 
layer

nheads: number of attention heads per layer, N: model size



Model Shape



Model Scale



2. Smooth power laws

Performance has a power-law relationship with each of the three scale factors N, D, C when 
not bottlenecked by the other two, with trends spanning more than six orders of magnitude. 
We observe no signs of deviation from these trends on the upper end, though performance 
must flatten out eventually before reaching zero loss.





3. Transfer improves with test performance

When we evaluate models on text with a different distribution than they were trained on, the results are 
strongly correlated to those on the training validation set with a roughly constant offset in the loss – in other 
words, transfer to a different distribution incurs a constant penalty but otherwise improves roughly in line with 
performance on the training set





4. Universality of overfitting

Performance improves predictably as long as we scale up N and D in tandem, but enters a regime of 
diminishing returns if either N or D is held fixed while the other increases. The performance penalty 
depends predictably on the ratio N^0.74/D, meaning that every time we increase the model size 8x, we 
only need to increase the data by roughly 5x to avoid a penalty. 





Three principles:

1. Changes in vocabulary size or tokenization are expected to rescale the loss by an overall factor. The

parameterization of L(N, D) (and all models of the loss) must naturally allow for such a rescaling. 

2. Fixing D and sending N → ∞, the overall loss should approach L(D). Conversely, fixing N and

sending D → ∞ the loss must approach L(N).

3. L(N, D) should be analytic at D = ∞, so that it has a series expansion in 1/D with integer powers.

Theoretical support for this principle is significantly weaker than for the first two.







5. Universality of Training

Training curves follow predictable power-laws whose parameters are roughly independent of the model 
size. By extrapolating the early part of a training curve, we can roughly predict the loss that would be 
achieved if we trained for much longer.





6. Sample efficiency

Large models are more sample-efficient than small models, reaching the same level of performance with 
fewer optimization steps and using fewer data points.





7. Convergence is inefficient

When working within a fixed compute budget C but without any other restrictions on the 
model size N or available data D, we attain optimal performance by training very large 
models and stopping significantly short of convergence.



As we scale up language modeling with an optimal allocation of computation, we should predominantly 

increase the model size N, while simultaneously scaling up the batch size via B ∝ Bcrit with negligible 
increase in the number of serial steps.



8. Optimal batch size

The ideal batch size for training these models is roughly a power of the loss only; It is roughly 1-2 million 
tokens at convergence for the largest models we can train.

It was argued that there is a critical batch size Bcrit for training; for B up to Bcrit the batch size can be 
increased with very minimal degradation in compute-efficiency, whereas for B > Bcrit increases in B result 
in diminishing returns. It was also argued that the gradient noise scale provides a simple prediction for 
Bcrit, and that neither depends directly on model size except through the value of the loss that has been 
attained. These results can be used to predict how training time and compute will vary with the batch size. 







Summary

These results show that language modeling performance improves smoothly and 
predictably as we appropriately scale up model size, data, and compute. We 
expect that larger language models will perform better and be more sample 
efficient than current models.



Discussion

In experiments with large empirical datasets, the power law becomes obscure if we 
consider all the parameters (including embedding).

● Why not taking all the parameters (including embedding) into consideration?



Discussion

● Is it possible to generate the power law relation to other models? What 
other models you want to test on?



Discussion

● What are some caveats/suspicious parts in the power law conclusion in 
this paper?


