Scaling Laws for Neural
Language Models

Ruixiao Wang
Jan 31, 2023

A study on language model performance
Cross entropy loss, Transformer architecture

Dataset: WebText2, vocabulary size = 50257

Summary

The test loss scales as a power-law with model size, dataset size, and the amount of compute used
for training, with some trends spanning more than seven orders of magnitude.

https://en.wikipedia.org/wiki/Power_law

Experiment

A variety of models have been trained with different factors including;:

e Model size (N): ranging in size from 768 to 1.5 billion non-embedding parameters.

e Dataset size (D): ranging from 22 million to 23 billion tokens.

e Model shape: including depth, width, attention heads, and feed-forward dimension.

e Context length: 1024 for most runs, with some experiments with shorter contexts.

e Batch size: 2”19 for most runs, with some variations to measure the critical batch size. Training at the

critical batch size provides a roughly optimal compromise between time and compute efficiency.

Key Findings

e Performance depends strongly on scale, weakly on model shape
e Smooth power laws

e Universality of overfitting

e Universality of training

e Transfer improves with test performance

e Sample efficiency

e Convergence is inefficient

e Optimal batch size

Notations

e [— the cross entropy loss in nats. Typically it will be averaged over the tokens in a context, but in
some cases we report the loss for specific tokens within the context.

e N — the number of model parameters, excluding all vocabulary and positional embeddings

e (' ~ 6NBS — an estimate of the total non-embedding training compute, where B is the batch size,
and S is the number of training steps (ie parameter updates). We quote numerical values in PF-days,
where one PF-day = 10*® x 24 x 3600 = 8.64 x 10'? floating point operations.

e D —the dataset size in tokens

e Bt — the critical batch size [MKAT18], defined and discussed in Section Training at the
critical batch size provides a roughly optimal compromise between time and compute efficiency.

e C\hin — an estimate of the minimum amount of non-embedding compute to reach a given value of

the loss. This is the training compute that would be used if the model were trained at a batch size
much less than the critical batch size.

e Sinin —an estimate of the minimal number of training steps needed to reach a given value of the loss.
This is also the number of training steps that would be used if the model were trained at a batch size
much greater than the critical batch size.

e ax — power-law exponents for the scaling of the loss as L(X) oc 1/X“X where X can be any of
N..D, €,.8,B,C™,

1. Performance depends strongly on scale, weakly on model shape

Scale:

e the number of model parameters N (excluding embeddings)
e the size of the dataset D
e the amount of compute C used for training

Shape:
e Depth
e width
e number of self-attention heads
e feed-forward dimension

Model Shape

We use IV to denote the model size, which we define as the number of non-embedding parameters
N = 2dmodelnlayer (Zdattn -+ dff)
= 12njayerdaoqer With the standard daten = dig /4 = dimodel

Niayer : numMber of layers,
Omoder: dimension of the residual stream,
ds: dimension of the intermediate feed-forward layer

Nheads: NumMber of attention heads per layer

Train models with fixed size while varying a single hyperparameter.

This was simplest for the case of Nheads. When varying Niayer, we simultaneously varied dmodel while keeping N fixed.
Similarly, to vary dff at fixed model size we also simultaneously varied the dmodel parameter,

We parameterize the Transformer architecture using hyperparameters nj,y., (number of layers), dmoqe (di-
mension of the residual stream), dg (dimension of the intermediate feed-forward layer), d.;+,, (dimension of
the attention output), and ny..qs (number of attention heads per layer). We include n, tokens in the input
context, with n.¢, = 1024 except where otherwise noted.

We use N to denote the model size, which we define as the number of non-embedding parameters

Operation Parameters FLOPs per Token

Embed (Bporel F Puise) Burodul 4dmodel

Attention: QKV Mayer@model3dattn 2Mayer@model 3dattn

Attention: Mask — 2N ayerNetxBattn

Attention: Project NisyerOattndimodel 2n)ayerdattn@embd

Feedforward Nayer2dmodelds 2N)ayer2dmodeldit

De-embed — 2dmodelMvocab

Total (Non-Embedding) | N = 2dmodeiNayer (2dattn + dg) | Crorward = 2N + 2NjayerNctxattn

Table 1 Parameter counts and compute (forward pass) estimates for a Transformer model. Sub-leading
terms such as nonlinearities, biases, and layer normalization are omitted.

Model Shape

10%

—*— Nhead = 8
8% *— dmodel/Nheas = 64

6%

4%

Loss Increase

2%

0% T

7~

—e— 50M Params
274M Params
~+— 1.5B Params

A wide range of architectures
achieve similar performance

—#— dmodel = 256
—%— dmodel = 512
~¥— Omogel = 1024

I 22% additional compute
compensates for 1% loss increase

10(1

Feed-Forward Ratio (ds / dmode)

10!

50M Parameters

10! 10%

103

Aspect Ratio (dmodel / nlayer)

10! 107
Attention Head Dimension (dmodel / Nhead)
25M Parameters

Figure 5 Performance depends very mildly on model shape when the total number of non-embedding
parameters NV is held fixed. The loss varies only a few percent over a wide range of shapes. Small differences
in parameter counts are compensated for by using the fit to L(V) as a baseline. Aspect ratio in particular can
vary by a factor of 40 while only slightly impacting performance; an (njayer, dmodel) = (6,4288) reaches a
loss within 3% of the (48, 1600) model used in [RWC™19].

Niayer : number of layers, dmodel: dimension of the residual stream, dff: dimension of the intermediate feed-forward

layer

Nheads: number of attention heads per layer, N: model size

Model Shape

7
6
5 5
2 0 2
| T S
- —e— 1 Layer = —e— 1 Layer
& —e— 2 Layers & —e— 2 Layers .
31 —-— 3 Layers 3] =— 3 Layers i D
—+— 6 Layers - —+— 6 Layers \\
—+— >6 Layers Bk —+— >6 Layers
2 T T T T 2 T T T T T T T
108 107 108 10° 103 10 10° 108 107 108 10°
Parameters (with embedding) Parameters (non-embedding)

Figure 6 Left: When we include embedding parameters, performance appears to depend strongly on the
number of layers in addition to the number of parameters. Right: When we exclude embedding parameters,
the performance of models with different depths converge to a single trend. Only models with fewer than 2
layers or with extreme depth-to-width ratios deviate significantly from the trend.

Model Scale

4.2

—— L=(D/5.4-1013)70:09 | 5.6 —— L=(N/8.8-1013)-0076

3.9
4.8
2" 6
X 4.0
S
g 3.3 3.2
F 3
3.0
2.4
L=(Ciijnf2.3 - 1059950
2 , , . . 27 y . ! : :
109 107 1075 103 10°' 10! 108 10° 10° 107 109
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute? used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

2. Smooth power laws

Performance has a power-law relationship with each of the three scale factors N, D, C when
not bottlenecked by the other two, with trends spanning more than six orders of magnitude.
We observe no signs of deviation from these trends on the upper end, though performance
must flatten out eventually before reaching zero loss.

DY, =2 N\ Y
L(D) ~ | == L(N) ~ [=&

4.2
5.6

—_— L=(D/5.4'1013)_0'095 — L =(N/8.8 - 1013)—0.076

3.9
4.8
2" 6
3 4.0
9 a
g 3.3 3.2
F 3
3.0
2.4
L=ACiinf2.3~ 1059990
2 , . . . 27 y . ! T :
10 107 1075 103 10°' 10! 108 10° 10° 107 10°
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute? used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

3. Transfer improves with test performance

When we evaluate models on text with a different distribution than they were trained on, the results are
strongly correlated to those on the training validation set with a roughly constant offset in the loss — in other

words, transfer to a different distribution incurs a constant penalty but otherwise improves roughly in line with
performance on the training set

~
M
o
7
¢

—eo— WebText2 (Test)) SRS { S~ < —==- Books during training
(8] —o— Internet Books 245 \\.\ Y -~~~ Wikipedia during training
—e— Books 4:57 \\5:;0\ ® Books at convergence
g —e— Wikipedia "é 4.0 *’\} 20 ® Wikipedia at convergence
» Common Crawl b7 \‘Q:\\‘
wn o = .
3 A 3.5 \\.\‘Q
4 = -l\
7 Q 29
,.C'. ~
() = O
= (@) 3 O S \t .~
3 g e
o '@
1)
22.5]
—
104 10° 10° 107 108 109 5.0 4.5 4.0 3.5 3.0 250
Parameters (non-embedding) Test Loss on Training Distribution

Figure 8 Left: Generalization performance to other data distributions improves smoothly with model size,
with only a small and very slowly growing offset from the WebText2 training distribution. Right: Gener-
alization performance depends only on training distribution performance, and not on the phase of training.
We compare generalization of converged models (points) to that of a single large model (dashed curves) as it

trains.

4. Universality of overfitting

Performance improves predictably as long as we scale up N and D in tandem, but enters a regime of
diminishing returns if either N or D is held fixed while the other increases. The performance penalty
depends predictably on the ratio N*0.74/D, meaning that every time we increase the model size 8x, we
only need to increase the data by roughly 5x to avoid a penalty.

N\, D] L(N,S) = Ne aN+ _ S *
L(N,D) = (F) +3‘: 2SN Smin(S)

Loss vs Model and Dataset Size Loss vs Model Size and Training Steps
s O 4.4 KN =
4.5 e TN °
R Q
) L [] 8 E
4.0 e, Params 10 b
i, Y. 708M &
7 3 5 ’ W sl iisin s e o 302M g
g O B o 8M 7
2 2 T S o e 3M 10 5
3.0 g h e 25M 2
) .. e 393.2K g
©
106 5
b 2.4 ' ' A
107 108 10° 1010 104 105
Tokens in Dataset Estimated Snmin

Figure 4 Left: The early-stopped test loss L(NN, D) varies predictably with the dataset size D and model
size N according to Equation (1.5). Right: After an initial transient period, learning curves for all model
sizes N can be fit with Equation (1.6), which is parameterized in terms of Sy,i,, the number of steps when
training at large batch size (details in Section 5.1).

L(N,D) = [(lj\(,)g + %

Three principles:

1. Changes in vocabulary size or tokenization are expected to rescale the loss by an overall factor. The
parameterization of L(N, D) (and all models of the loss) must naturally allow for such a rescaling.

2. Fixing D and sending N — «, the overall loss should approach L(D). Conversely, fixing N and
sending D — « the loss must approach L(N).

3. L(N, D) should be analytic at D = «, so that it has a series expansion in 1/D with integer powers.

Theoretical support for this principle is significantly weaker than for the first two.

Data Size Bottleneck

o
w

Test Loss

&
o

106 107 108 10°
Params (non-embed)

Data Size
e 21M
43M
86M
172M
344M
688M
1.4B
22.0B

Overfitting

10-4 10-3 10-2
NaN/aD/D

10-1

Data Size
e 21IM
43M
86M
172M
344M
688M
1.4B
22.0B

Figure 9 The early-stopped test loss L(/N, D) depends predictably on the dataset size D and model size N
according to Equation (1.5). Left: For large D, performance is a straight power law in V. For a smaller fixed
D, performance stops improving as N increases and the model begins to overfit. (The reverse is also true,

see Figure 4.) Right: The extent of overfitting depends predominantly on the ratio N > /D, as predicted in
equation (ﬁ). The line is our fit to that equation.

We estimate that the variation in the loss with different random seeds is roughly 0.02, which means that to
avoid overfitting when training to within that threshold of convergence we require

D > (5x 10%) NO-™ (4.4)

5. Universality of Training

Training curves follow predictable power-laws whose parameters are roughly independent of the model
size. By extrapolating the early part of a training curve, we can roughly predict the loss that would be
achieved if we trained for much longer.

w9-(5) +(mim)

g Performance vs Compute Budget Performance vs Steps
; P 2 5.4
i 10° 4.8
6 10°
102 4.2
4 °) % 2
S, 1072 &, S 3.6 Q
@ =3 3 47 %
10
8 o 2 3.0
3 1074 104
2.4
15~
104 106 108 106 107 108 10°

Parameters (non-embedding) Parameters (non-embedding)

Figure 11 When we hold either total compute or number of training steps fixed, performance follows
L(N, S) from Equation (5.6). Each value of compute budget has an associated optimal model size that
maximizes performance. Mediocre fits at small S are unsurprising, as the power-law equation for the learning

curves breaks down very early in training.

6. Sample efficiency

Large models are more sample-efficient than small models, reaching the same level of performance with

fewer optimization steps and using fewer data points.

Loss vs Model and Dataset Size

.. ®
.
’ .b'--.. --------------------
o~y
‘e, Wy ”
’ W S i s s e s m e ®..
®-...
. f..
107 108 109 1010

Tokens in Dataset

Params
708M
302M
85M

® 3M

25M

@ 393.2K

Larger models require fewer samples The optimal model size grows smoothly
to reach the same performance with the loss target and compute budget

Line color indicates
number of parameters

E
108 108 100

Test Loss 10

\\ «<——1038 Params

Compute-efficient
training stops far
short of convergence

107 100 101 10 10 10 100
Tokens Processed Compute (PF-days)

/. Convergence is inefficient

When working within a fixed compute budget C but without any other restrictions on the
model size N or available data D, we attain optimal performance by training very large
models and stopping significantly short of convergence.

N(Cmin) X (C'min)o'73

Smin X (Cfmin)o'o3

E 108 A Minimum serial steps o Data requirements
= increases negligibly — —~ _9\‘5\ grow relatively slowly
Q 8\
=] e
£ 106 ,\@L% “g,\te 3
S} A a\G
O *6
) QO
> 104 i \ - .
o 178 Optimal model size
8 a0\ S increases very quickly
= Q‘LN\O
£1024 0000
= 40
=] AN
>

100 . , - : J

108 1076 1074 1072 10°

Compute (PF-days)

Figure 3 As more compute becomes available, we can choose how much to allocate towards training larger
models, using larger batches, and training for more steps. We illustrate this for a billion-fold increase in
compute. For optimally compute-efficient training, most of the increase should go towards increased model
size. A relatively small increase in data is needed to avoid reuse. Of the increase in data, most can be used to
increase parallelism through larger batch sizes, with only a very small increase in serial training time required.

As we scale up language modeling with an optimal allocation of computation, we should predominantly

increase the model size N, while simultaneously scaling up the batch size via B ©€ Becrit with negligible

increase in the number of serial steps.

8. Optimal batch size

The ideal batch size for training these models is roughly a power of the loss only; It is roughly 1-2 million
tokens at convergence for the largest models we can train.

It was argued that there is a critical batch size Becrit for training; for B up to Bcrit the batch size can be
increased with very minimal degradation in compute-efficiency, whereas for B > Bcrit increases in B result
in diminishing returns. It was also argued that the gradient noise scale provides a simple prediction for
Bcerit, and that neither depends directly on model size except through the value of the loss that has been
attained. These results can be used to predict how training time and compute will vary with the batch size.

~ B*
~ Ll/aB

Bcrit (L)

We will use B,i;(L) to estimate the relation between the number of training steps S while training at batch
size B = 2'° tokens and the number of training steps while training at B > B,;;. This is simply

_ S
o 1 + Bcrit(L)/B

for any given target value L for the loss. This also defines a critical value of the compute needed to train to L
with a model of size N if we were to train at B < By,;;(L). This is

_ %,
=1+ B/Boy(L)

where C = 6N BS estimates the (non-embedding) compute used at batch size B.

Sin(19) (minimum steps, at B > Byit) (5.4)

Cmin (C)

(minimum compute, at B < Beyit) 5:5)

The results for L(N, Sp,in) can be used to derive a lower-bound (and rough estimate) of the step at which
early stopping should occur when training is data limited. It is motivated by the idea that finite and infinite D
learning curves for a given model will be very similar until we reach Spin = Sstop. Thus overfitting should
be proportional to the correction from simply ending training at Sg,p,. This will underestimate Sy, because
in reality the test loss will decrease more slowly when we have a finite D, and therefore we will require more
training steps to reach the optimal test loss at finite D. This line of reasoning leads to the inequality

Se
[L(N, D) — L(N, 00)] /%

Sstop(N, D) 2 (.7)

Summary

These results show that language modeling performance improves smoothly and
predictably as we appropriately scale up model size, data, and compute. We
expect that larger language models will perform better and be more sample
efficient than current models.

Discussion

In experiments with large empirical datasets, the power law becomes obscure if we
consider all the parameters (including embedding).

5 5
A oL A
S 4 — ayer S 4
- —e— 1 Layer \\ = —e— 1 Layer
& —e— 2 Layers = 5 —e— 2 Layers

31 —— 3 Layers \\ 31 —— 3 Layers \
—— 6 Layers —e— 6 Layers \
> 6 Layers > 6 Layers

106 107 108 10° 103 10* 10° 10% 107 108 10°
Parameters (with embedding) Parameters (non-embedding)

e Why not taking all the parameters (including embedding) into consideration?

Discussion

e |[s it possible to generate the power law relation to other models? What
other models you want to test on?

Discussion

e What are some caveats/suspicious parts in the power law conclusion in
this paper?

