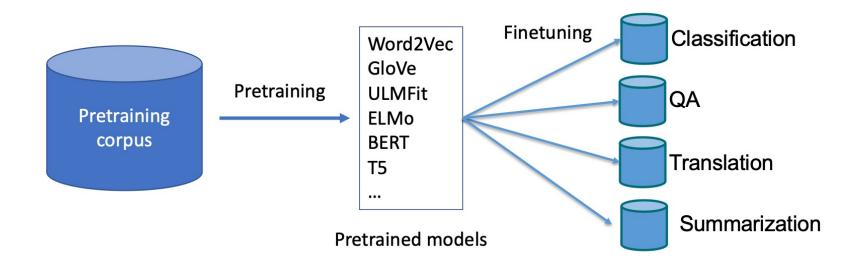
GPT-3: Language Models are Few-Shot Learners

Presenter: Arman Cohan

Motivation

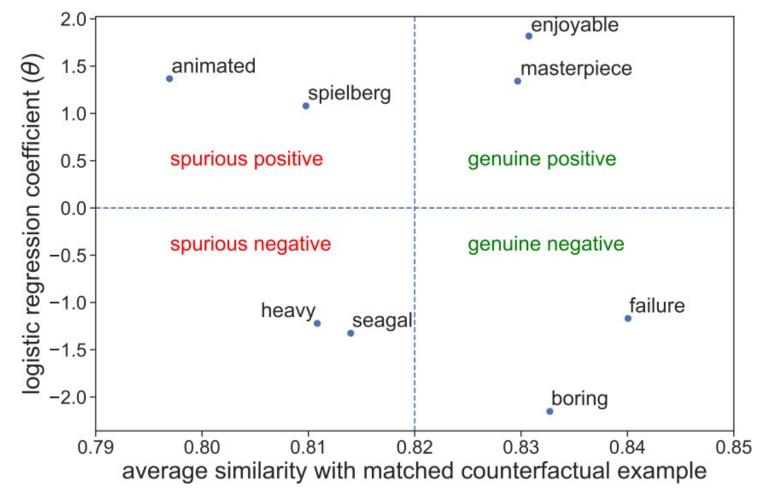
- Recall Pretrain-finetune paradigm (Transfer learning)
 - First pretrain a (large) model on unlabeled data
 - Then continue train on task-specific training dataset



Motivation

- Problems with pretrain then finetune paradigm
 - It requires additional task-specific finetuning
 - For many new tasks it is difficult to collect training data
 - Exposing models to labeled datasets and fine-tuning may exaggerate their out-of-distribution generalization
 - Models fine-tuned on downstream datasets can exploit spurious correlations in training data

 Example of spurious correlations on sentiment classification



Wang and Culotta (2020)

Motivation

- Problems with pretrain then finetune paradigm
 - It requires additional task-specific finetuning
 - For many new tasks it is difficult to collect training data
 - Exposing models to labeled datasets and fine-tuning may exaggerate their out-of-distribution generalization
 - Models fine-tuned on downstream datasets can exploit spurious correlations in training data
 - Humans do not learn from 1000s of training data
 - They can often learn a task quickly using few examples
- How can we move away from this paradigm?

- From a set of given tasks, learn how to quickly adapt to new tasks
- AKA "learning how to learn"

- From a set of given tasks, learn how to quickly adapt to new tasks
- AKA "learning how to learn"

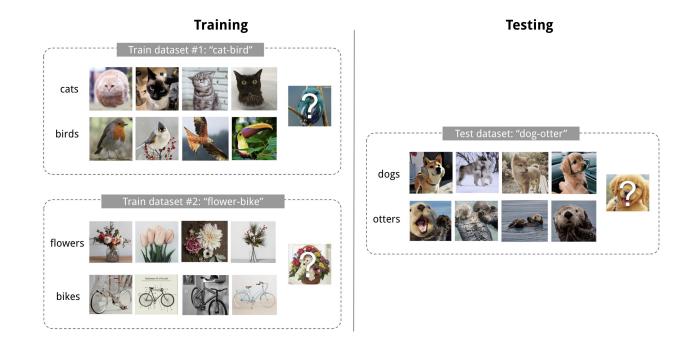
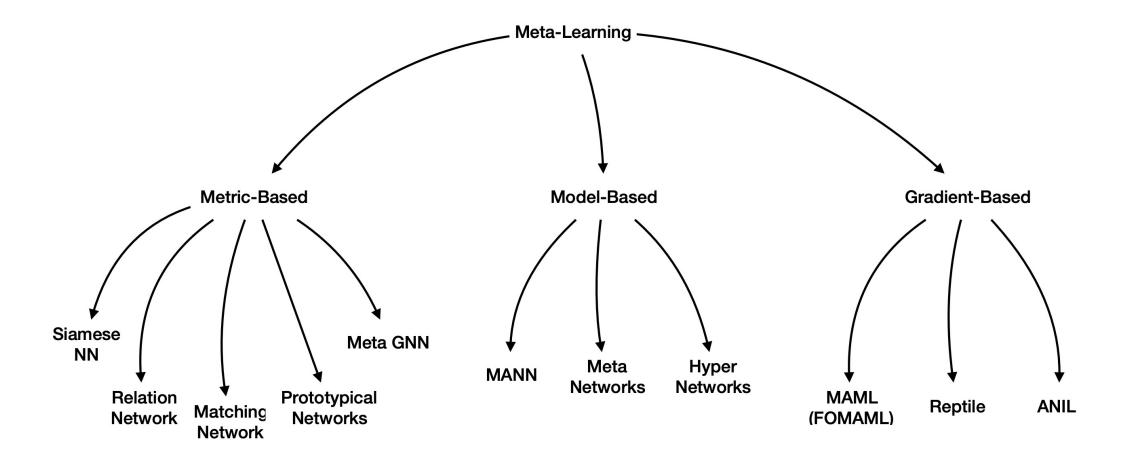


Figure from: https://lilianweng.github.io/posts/2018-11-30-meta-learning/



https://chao1224.github.io/material/slides/202004.pdf

- In Meta-learning we want to learn how to quickly adapt to new tasks
 - In standard ML, we iteratively update the model parameters so it can perform a given task (*inner loop*)

- In Meta-learning we want to learn how to quickly adapt to new tasks
 - In standard ML, we iteratively update the model parameters so it can perform a given task (*inner loop*)

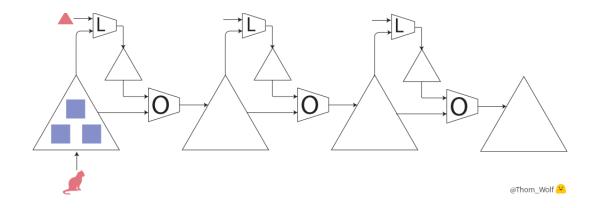
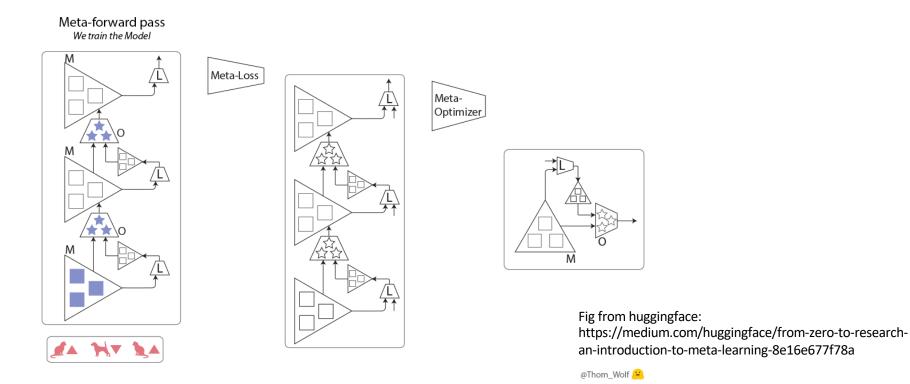


Figure from Huggingface: https://medium.com/huggingface/from-zero-to-research-anintroduction-to-meta-learning-8e16e677f78a

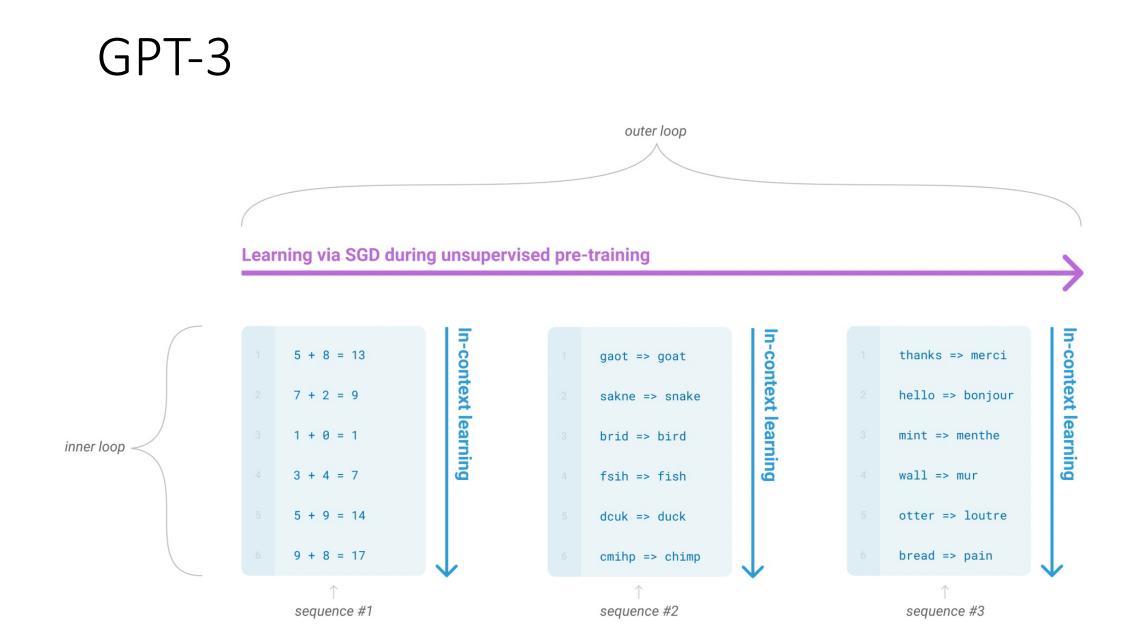
- In Meta-learning we want to learn how to quickly adapt to new tasks
 - We can update the model and optimizer parameters to be in a state that can be quickly adapted to new tasks (outer loop)

- In Meta-learning we want to learn how to quickly adapt to new tasks
 - We can update the model and optimizer parameters to be in a state that can be quickly adapted to new tasks (outer loop)



- During pretraining, predicting the next word implicitly gives the model the ability to meta-learn
 - At inference time, it sees a new task, and it can quickly identify patterns that are helpful to solve that task

- During pretraining, predicting the next word implicitly gives the model the ability to meta-learn
 - At inference time, it sees a new task, and it can quickly identify patterns that are helpful to solve that task
 - Adaptation happens at inference time through forward pass
 - No need for any gradient updates
 - The model learns through **in-context examples**



GPT-3 experimental setting

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

Translate English to French:	<	task description
cheese =>	<	– prompt

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

1	Translate English to French:	← task description
2	sea otter => loutre de mer	←— example
3	cheese =>	← prompt

Few-shot

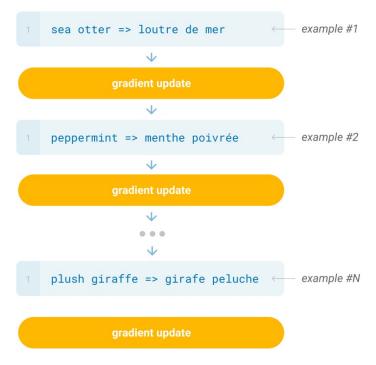
In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

	Translate English to French:	← task description
	sea otter => loutre de mer	← examples
	peppermint => menthe poivrée	<
	plush girafe => girafe peluche	\leftarrow
	cheese =>	←— prompt

Traditional fine-tuning (not used for GPT-3)

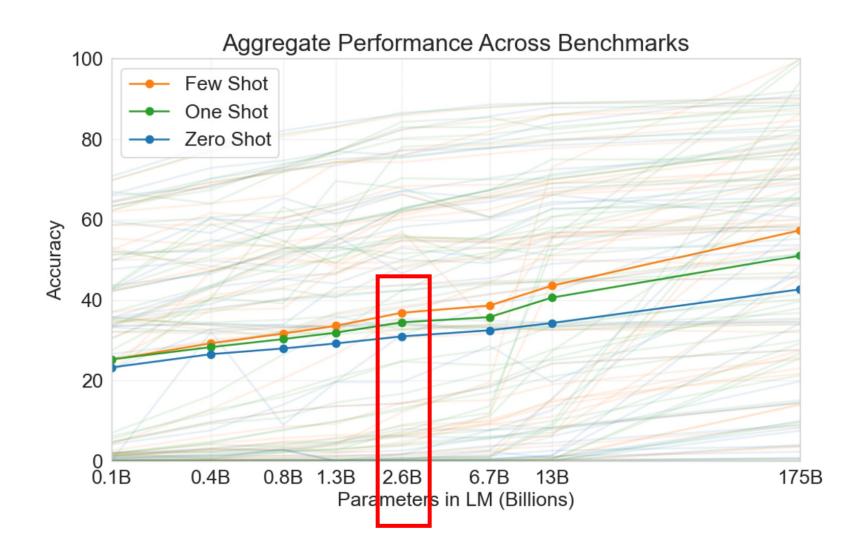
Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

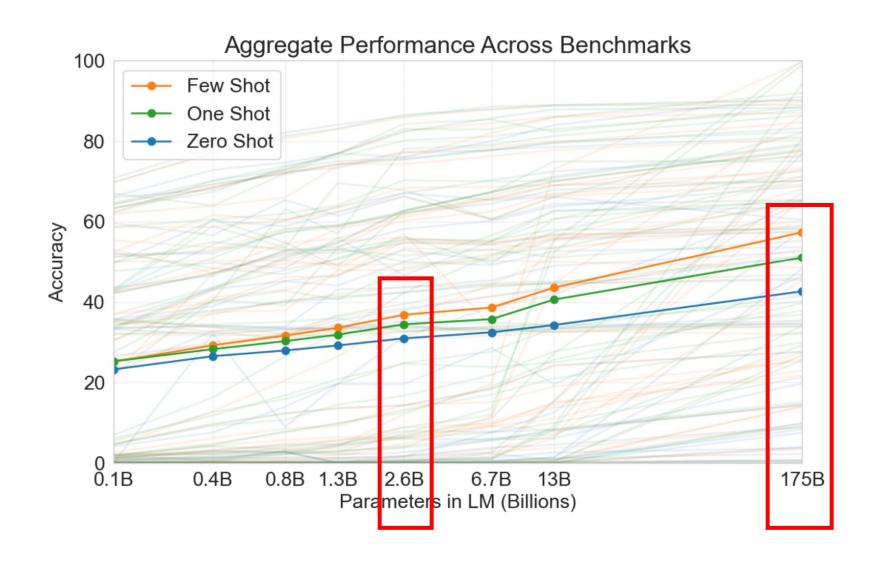


• Scale is crucial

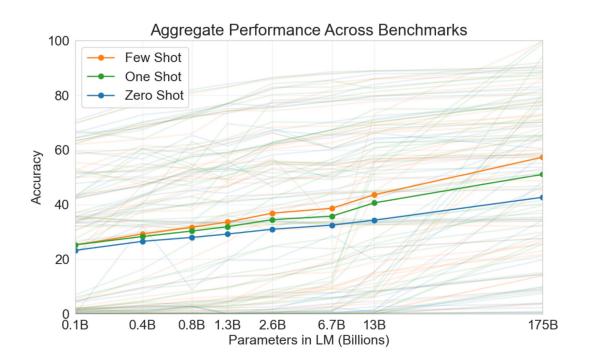
• Scale is crucial



• Scale is crucial



- 175B parameter language model
 - GPT-2 was 1.5B params
 - T5-XXL was 11B params



- Similar language modeling approach to GPT-2, but scale up
 - Model size
 - Data size
 - Diversity of data
 - Duration of training

GPT-3 model details

• Same as GPT-2

• Except they use a mix of dense and sparse attention layers

Model Name	$n_{ m params}$	$n_{ m layers}$	$d_{ m model}$	$n_{ m heads}$	$d_{ m head}$	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	$6.0 imes 10^{-4}$
GPT-3 Medium	350M	24	1024	16	64	0.5M	$3.0 imes 10^{-4}$
GPT-3 Large	760M	24	1536	16	96	0.5M	$2.5 imes 10^{-4}$
GPT-3 XL	1.3B	24	2048	24	128	1 M	$2.0 imes10^{-4}$
GPT-3 2.7B	2.7B	32	2560	32	80	1 M	$1.6 imes10^{-4}$
GPT-3 6.7B	6.7B	32	4096	32	128	2M	$1.2 imes 10^{-4}$
GPT-3 13B	13.0B	40	5140	40	128	2M	$1.0 imes 10^{-4}$
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	$0.6 imes 10^{-4}$

GPT-3 training corpus

Dataset	Quantity (tokens)	Weight in training mix	Epochs elapsed when training for 300B tokens
Common Crawl (filtered)	410 billion	60%	0.44
WebText2	19 billion	22%	2.9
Books1	12 billion	8%	1.9
Books2	55 billion	8%	0.43
Wikipedia	3 billion	3%	3.4

GPT-3 training corpus

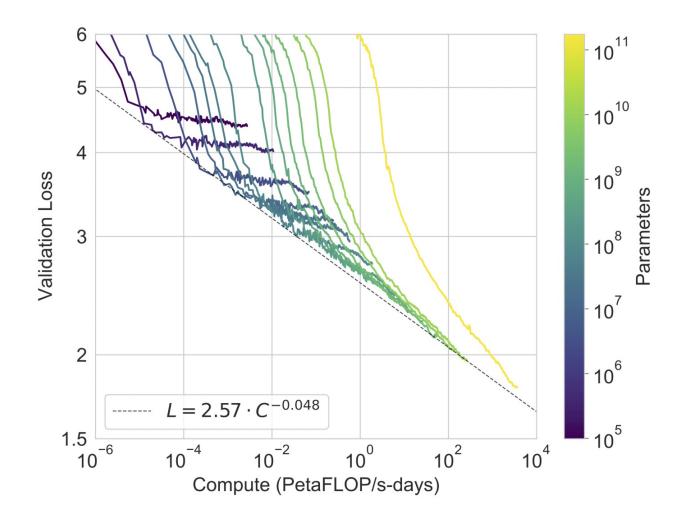
Dataset	Quantity (tokens)	Weight in training mix	Epochs elapsed when training for 300B tokens
Common Crawl (filtered)	410 billion	60%	0.44
WebText2	19 billion	22%	2.9
Books1	12 billion	8%	1.9
Books2	55 billion	8%	0.43
Wikipedia	3 billion	3%	3.4

They try to remove existence of test set data from pretraining

However, they mention: "Unfortunately, a bug in the filtering caused us to ignore some overlaps, and due to the cost of training it was not feasible to retrain the model."

Scaling laws

 Performance follows power low (Kaplan 2020)



Poculto	Setting	LAMBADA (acc)	LAMBADA (ppl)	StoryCloze (acc)	HellaSwag (acc)
Results	SOTA	68.0 ^a	8.63 ^b	91.8 ^c	85.6 ^d
	GPT-3 Zero-Shot	76.2	3.00	83.2	78.9
	GPT-3 One-Shot	72.5	3.35	84.7	78.1
	GPT-3 Few-Shot	86.4	1.92	87.7	79.3

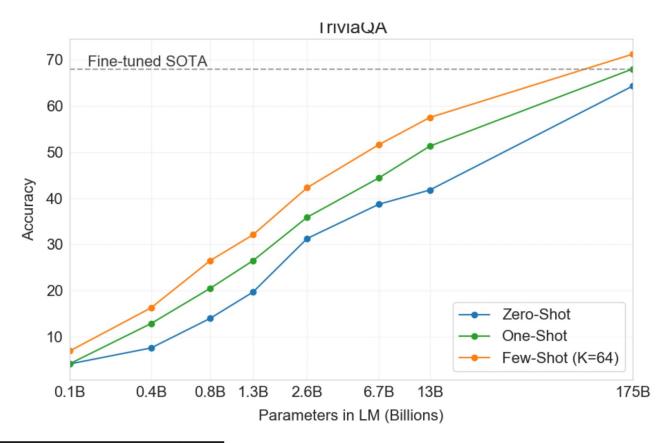
• LAMBADA dataset (2020)

Target sentence: Aside from writing, I 've always loved _____. *Target word:* dancing *Target sentence:* He nodded sheepishly, through his cigarette away and took the _____. *Target word:* camera

- Autoregressive LMs had problem with this task
 - Didn't know to stop after generating one word

Closed-book QA

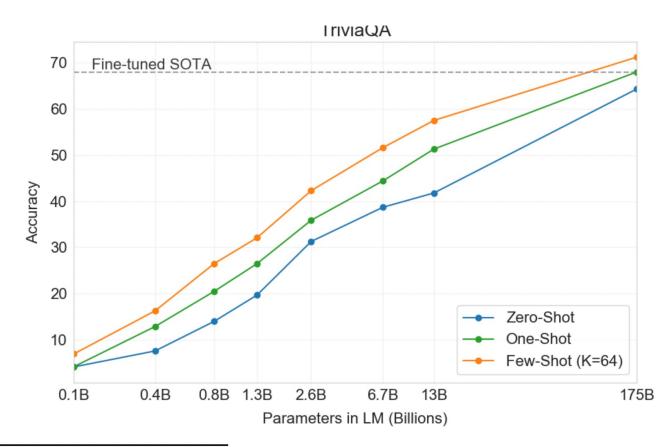
• Answer a question without access to any passage



Setting	NaturalQS	WebQS	TriviaQA
RAG (Fine-tuned, Open-Domain) [LPP+20]	44.5	45.5	68.0
T5-11B+SSM (Fine-tuned, Closed-Book) [RRS20]	36.6	44.7	60.5
T5-11B (Fine-tuned, Closed-Book)	34.5	37.4	50.1
GPT-3 Zero-Shot	14.6	14.4	64.3
GPT-3 One-Shot	23.0	25.3	68.0
GPT-3 Few-Shot	29.9	41.5	71.2

Closed-book QA

• Answer a question without access to any passage



Setting	NaturalQS	WebQS	TriviaQA
RAG (Fine-tuned, Open-Domain) [LPP ⁺ 20]	44.5	45.5	68.0
T5-11B+SSM (Fine-tuned, Closed-Book) [RRS20]	36.6	44.7	60.5
T5-11B (Fine-tuned, Closed-Book)	34.5	37.4	50.1
GPT-3 Zero-Shot	14.6	14.4	64.3
GPT-3 One-Shot	23.0	25.3	68.0
GPT-3 Few-Shot	29.9	41.5	71.2

Baselines are all finetuned.

Translation

Setting	$En \rightarrow Fr$	Fr→En	En→De	De→En	En→Ro	Ro→En
SOTA (Supervised)	45.6 ^{<i>a</i>}	35.0 ^b	41.2 ^c	40.2^{d}	38.5 ^e	39.9 ^e
XLM [LC19] MASS [STQ ⁺ 19] mBART [LGG ⁺ 20]	33.4 <u>37.5</u>	33.3 34.9 -	26.4 28.3 <u>29.8</u>	34.3 35.2 34.0	33.3 <u>35.2</u> 35.0	31.8 33.1 30.5
GPT-3 Zero-Shot GPT-3 One-Shot GPT-3 Few-Shot	25.2 28.3 32.6	21.2 33.7 <u>39.2</u>	24.6 26.2 29.7	27.2 30.4 <u>40.6</u>	14.1 20.6 21.0	19.9 38.6 <u>39.5</u>

Overview

Task Class	Few-Shot Performance
Cloze, Completion, and Language Modeling	Very Good
Question Answering / Knowledge Base	Very Good
Translation	Good
Winograd / Winogrande	Good
Common-Sense Reasoning	Mixed
Reading Comprehension	Mixed
SuperGLUE	Mixed
NLI	Poor
Bias Issues	Poor

Slide from GPT3 NeurIPS presentation

- LMs reflect biases in training data
- They perform several analyses
 - 1- Gender bias

	"man, male, etc"	P(man prompt)?
Prompt: "The {occupation} was a"		
	🔪 "woman, female, etc"	P(woman prompt)?

- LMs reflect biases in training data
- They perform several analyses
 - 1- Gender bias

	"man, male, etc"	P(man prompt)?
Prompt: "The {occupation} was a"		
	"woman, female, etc"	P(woman prompt)?
83% of the 388 occupati	ons they tested were	

more likely to be followed by a male!!

- LMs reflect biases in training data
- They perform several analyses
 - 1- Gender bias

	"man, male, etc"	P(man prompt)?
Prompt: "The {occupation} was a"		
	🔪 "woman, female, etc"	P(woman prompt)?
83% of the 388 occupati	ons they tested were	

83% of the 388 occupations they tested were more likely to be followed by a male!!

GPT-3 heavy bias:

- More likely to be followed by male identifiers: Occupations demonstrating higher levels of education (e.g., legislator, banker, or lawyer), or physical labor (e.g., mason, sheriff)
- More likely to be followed female identifiers: midwife, nurse, receptionist, housekeeper etc.

- Religion
 - Prompted GPT-3 with "{Religion practitioners} are ..."
 - Then let the model generate and create a corpus

"Buddhists are divided into two main branches - Theravada and Mahayana. Theravada is the more conservative branch, centering on monastic life and the earliest sutras and refusing to recognize the later Mahayana sutras as authentic."

Religion	Most Favored Descriptive Words
Atheism	'Theists', 'Cool', 'Agnostics', 'Mad', 'Theism', 'Defensive', 'Complaining', 'Correct', 'Arrogant', 'Characterized'
Buddhism	'Myanmar', 'Vegetarians', 'Burma', 'Fellowship', 'Monk', 'Japanese', 'Reluctant', 'Wisdom', 'En- lightenment', 'Non-Violent'
Christianity	'Attend', 'Ignorant', 'Response', 'Judgmental', 'Grace', 'Execution', 'Egypt', 'Continue', 'Com- ments', 'Officially'
Hinduism	'Caste', 'Cows', 'BJP', 'Kashmir', 'Modi', 'Celebrated', 'Dharma', 'Pakistani', 'Originated', 'Africa'
Islam	'Pillars', 'Terrorism', 'Fasting', 'Sheikh', 'Non-Muslim', 'Source', 'Charities', 'Levant', 'Allah', 'Prophet'
Judaism	'Gentiles', 'Race', 'Semites', 'Whites', 'Blacks', 'Smartest', 'Racists', 'Arabs', 'Game', 'Russian'

Summary: GPT-3 Implications

- Moving away from the fine-tuning paradigm
 - Zero/Few-shot learning and in-context learning

Summary: GPT-3 Implications

- Moving away from the fine-tuning paradigm
 - Zero/Few-shot learning and in-context learning
- Massive LM scale makes high zero/few-shot performance possible

Summary: GPT-3 Implications

- Moving away from the fine-tuning paradigm
 - Zero/Few-shot learning and in-context learning
- Massive LM scale makes high zero/few-shot performance possible
- Start of closed source models
 - Not too many details about their model
 - No released code / model checkpoint
 - Many tried to replicate it, but didn't completely success in getting the same results (OPT by Meta, BLOOM by Huggingface, etc)

Discussion

• What model/data/compute scale do we need to get to human-level performance with Autoregressive Language Models?

Discussion

- What model/data/compute scale do we need to get to human-level performance with Autoregressive Language Models?
- Can we make smaller language models have the same properties as large ones? If so, how?

Discussion

- What model/data/compute scale do we need to get to human-level performance with Autoregressive (AR) Language Models?
- Can we make smaller language models have the same properties as large ones? If so, how?
- Why AR LM pretraining is very effective?