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- One of the first papers to really focus
on prompt engineering for
transformer models

Key Contributions

- Provides a method of training
transformers to perform well in a
few-shot setting with little data

- Claim: performance similar to GPT-3
can be obtained with LMs with
several orders of magnitude fewer
parameters

- Goal: environmentally sound NLP -
reducing the amount of compute for
few-shot learning




Prior Work:
Pattern-Exploiting Training (PET)
& Iterative PET (iPET)



Exploiting Cloze Questions for Few Shot Text Classification and NLI
(Shick and Schiitze, 2020)

Problems are difficult for most LMs to grasp from just a few examples:

- T,:This was the best pizza I've ever had. ~~~~ Label: A
- T,:You can get better sushi for half the price. ~~~ Label: B
- T,: Pizza was average. Not worth the price. ~~~ Label: 7??

Based on just the examples, how to infer the correct label for T,?
Task descriptions help solving few-shot tasks.
It's much easier to assign label B if we specify the task is identifying whether the text is about

prices.

- Helps distill the knowledge of generative models into discriminative downstream tasks
(e.g. sentiment analysis, natural language inference).



Patterns & Verbalizers

Pattern-verablizer pair (PVP) p = (Pv) consists of:

- a pattern function P which maps inputs
to cloze questions containing a single
mask

- averbalizer function v that maps each
output to a single token representing
task-specific meaning in P

Aim: derive the probability of an output y
being correct for input x from the probability
of v(y) being “correct” at masked position in
P(x).

"While the authors use a different -lcnninolugy. GPT-3 also
makes use of PVPs (Brown et al., 2020, pp. 50-61).
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- Input x = (x,,x,) converted into
a cloze question P(x).

- for each outputy, qp(ylx) comes from the
probability of v(y) being a plausible choice for
the masked position.



Patterns & Verbalizers

Yelp For the Yelp Reviews Full Star dataset
(Zhang et al., 2015), the task is to estimate the
rating that a customer gave to a restaurant on a 1-
to 5-star scale based on their review’s text. We
define the following patterns for an input text a:

Pi(a) = Ttwas ____. a
Ps(a) = a. Allinall, it was ____.

Pi(a) = a || In summary, the restaurant is ____.

We define a single verbalizer v for all patterns as

v(1) = terrible v(2) = bad
v(4) = good

v(3) = okay

v(H) — great

AG’s News AG’s News is a news classification
dataset, where given a headline a and text body b,
news have to be classified as belonging to one of
the categories World (1), Sports (2), Business (3)
or Science/Tech (4). For x = (a, b), we define the
following patterns:

P;(x) = Bese ab P(x) = [ (==h
Py(x)= ———ab Py(x)=ab(--.)
Ps(x) = —.__News: ab

Ps(x) = [ Category: ___lab

We use a verbalizer that maps 1-4 to “World”,
“Sports”, “Business” and “Tech”, respectively.

MNLI The MNLI dataset (Williams et al., 2018)
consists of text pairs x = (a, b). The task is to find
out whether a implies b (0), ¢ and b contradict each
other (1) or neither (2). We define

Pi(x)=[“"T[| 250" Py(x)=la? b

and consider two different verbalizers v, and vy:

v1(0) = Wrong v;(1) = Right v;(2) = Maybe
v2(0) = No va(1) = Yes  v2(2) = Maybe



Pattern-Exploiting Training (PET)

Pattern-Exploiting Training (PET)
- semi-supervised training
procedure

reformulate input examples as
cloze-style phrases to help LMs
understand the task

those phrases are used to assign soft
labels to large set of unlabeled
examples (distillation)

standard supervised training is used
on resulting soft-labeled training set
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Figure 1: PET for sentiment classification. (1) A num-
ber of patterns encoding some form of task description
are created to convert training examples to cloze ques-
tions; for each pattern, a pretrained language model is
finctuned. (2) The ensemble of trained models anno-
tates unlabeled data. (3) A classifier is trained on the
resulting soft-labeled dataset.



[terative PET (iPET)

Problem:
- Training set for the final model may contain many
mislabeled examples
- The knowledge of all individual models is distilled into
a single classifier
- Some patterns perform much worse than others.
Solution: Train several generations of models on datasets
of increasing size.



[terative PET (iPET)
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Figure 2: Schematic representation of PET (1-3) and iPET (a-c). (1) The initial training set is used to finctune an
ensemble of PLMs. (a) For each model, a random subset of other models generates a new training set by labeling
examples from D. (b) A new set of PET models is trained using the larger, model-specific datasets. (c¢) The
previous two steps are repeated £ times, each time increasing the size of the generated training sets by a factor of d.
(2) The final set of models is used to create a soft-labeled dataset 7. (3) A classifier C is trained on this dataset.



PET/iPET vs. GPT-3
(2021)




Recap: GPT_3 “Pl‘iming” (in-context learning)

Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

examples of the task are included in
the description of the task (2048
tokens in GPT-3 context window,
approx. 100 examples)

no gradient updates
but requires massive LM to work well

most LMs can only support a context
window of a few hundred tokens



Summary of the model

Underlying LM: ALBERT-xxlarge-v2 Pretraining objectives:
ALBERT = “A Lite BERT" - Masked language modeling (MLM)
https://huggingface.co/albert-xxlarge-v2 - Sentence Ordering Prediction (SOP)
- encoder only, like BERT Training data:
- 12 repeating layers
- 128 embedding dimension - BookCorpus (11,038 unpublished
- 4096 hidden dimension books, 800M words)
- b4 attention heads - English Wikipedia (2,500M words)

- 223M parameters - raw texts (self-supervised)

Plus final sequence classification head


https://huggingface.co/albert-xxlarge-v2

BoolQ (Clark et al., 2019) is a QA task where = MultiRC (Khashabi et al., 2018) is a QA task.
cach example consists of a passage p and a yes/no  Given a passage p, a question g and an answer
question g. We use the following patterns: candidate a, the task is to decide whether a is a
correct answer for g. We use the same verbalizer
as for BoolQ and similar patterns:

* p. Based on the previous passage, q? __. : ; Q
p B RERa e — * p. Question: g? Isita? __. A

* p. Question: g? Answer: __.

* Based on the followi ssage, q?7 __.
NNt L * p. Question: g? Is the correct answer “a”? __.

We define two verbalizers mapping questions . D- Based on the previous passage, ¢? Is “a" a
containing a true statement to yes/true and others correct answer? __.
to no/false, respectively, for a total of 6 PVPs.

CB (De Marneffe et al., 2019) and RTE (Dagan

et al., 2006) are textual entailment tasks like MNLI,

so we use PVPs similar to Schick and Schiitze
Entai I m ent s (2021). For a premise p and hypothesis h, we use

hel p, h™|_ %, W __p, R P

and a verbalizer that maps entailment to yes,
disagreement to no and neutral to maybe.



Tasks (cont’d)

Causal inference

Given a premise p, the task in COPA (Gordon
et al., 2012) is to determine the cause or effect of
the premise given two options ¢; and ¢3. For deter-
mining the effect, we use the following patterns:

‘c1"or“ce™ p,so__., cporca? p,so_ .

For determining the cause, we use the same pat-
terns but replace so with because. The verbalizer
for ¢ and ¢ is the identity function.

Pronoun resolution

For WSC (Levesque et al., 2011), each example
consists of a sentence s with a marked pronoun p
and noun 7, and the task is to determine whether p
refers to n. We follow (Raffel et al., 2020; Brown

et al., 2020) and treat WSC as a generative task.

We highlight p in s by putting it in asterisks and
usc the following patterns:

* s The pronoun “*px’ refersto .

S In the previous sentence, the pronoun ‘*p*’
refersto .

s In the passage above, what does the pronoun
*p*’ refer to? Answer: __.

Word sense

For WiC (Pilehvar and Camacho-Collados, 2019),
given a word w and two sentences s; and sp in
which it occurs, the task is to decide if w is used
with the same sense in both sentences. We use:

* “s1"/“sy”. Similar sense of “w™? __.

. 5152 Does w have the same meaning in both
sentences? __
* w. Sense (1) (@) “s1” () “s2”

For the first two patterns, we use yes as verbaliza-
tion for words used in the same sense and no for
other words; for the third pattern, we use b and 2.



ALBERT + PET/iPET

_ 80
outperforms GPT-3 ; P
on SuperGLUE é ®PET GPT-3
g 70
o
https://super.gluebenchmark.com/leaderboard/ % 60
-
- 32 training examples 32
- 0.1% of parameters compared U%)' 50

to GPT-3 (223M vs. 175B)
- Several hours on a single GPU 103 10° 10* 10° 10°
Parameters (Millions)




ALBERT+(i)PET

Params BoolQ CB COPA RTE WiC WSC MultiRC ReCoRD  Avg

Model (M) Acc. Acc. / Fl Acc. Acc. Acc. Acc. EM /Fla Acc. / Fl -
GPT-3 Small 125 43 1 429/26.1 67.0 523 498 58.7 6.1/450 698/70.7 50.1
GPT-3 Med 350 60.6 5897404 64.0 484 550 606 11.8/559 772/779 56.2
GPT-3 Large 760 62.0 53.6/32.6 72.0 469 530 548 168/642 813/82.1 56.8
GPT-3 XLL 1,300 64.1 69.6/48.3 77.0 509 530 490 208/654 83.1/84.0 60.0
> GPT-32.7B 2,700 70.3 67.9/45.7 83.0 56.3 516 625 247/695 86.6/87.5 643
2 GPT-36.7B 6,700 70.0 60.7/44.6 83.0 495 53.1 673 238/664 879/888 636
GPT-3 13B 13,000 70.2 66.1/46.0 86.0 60.6 5I1.1 750 25.0/693 889/89.8 669
GPT-3 175,000 71.5 82.1/57.2 92.0 729 553 750 325/748 89.0/90.1 732
PET 223 794 85.1/594 95.0 698 524 80.1 379/77.3 86.0/865 74.1
iPET 223 80.6 929/924 95.0 740 522 80.1 33.0/740 86.0/865 768
GPT-3 175,000 76.4 75.6/52.0 92.0 69.0 494 80.1 305/754 90.2/91.1 718
= PET 223 79.1 87.2/60.2 90.8 67.2 507 884 364/76.6 854/859 740
£ iPET 223 81.2 88.8/79.9 90.8 708 493 884 31.7/74.1 854/859 754
SotA 11,000 91.2 93.9/96.8 94.8 925 769 938 881/63.3 941/934 &893

Table 1: Results on SuperGLUE for GPT-3 primed with 32 randomly sclected examples and for PET / iPET with
ALBERT-xxlarge-v2 after training on FewGLUE. State-of-the-art results when using the regular, full size training
sets for all tasks (Raffel et al., 2020) are shown in italics.



Results without distillation

CB RTE MultiRC Avg

Model Acc./Fl  Acc. EM/Fla -

PET (Pours) 85.1/594 698 379/773 666
PET (parr-3) 83.3/58.1 71.8 254/68.3 63.1
PET (pPcomb) 845/590 747 39.1/77.7 68.3

PET (Pours) —dist  83.9/76.2 664 389/76.2 68.0
PET (Peomb) dist 83.9/76.2 729 39.6/766 70.4

Table 2: Results on selected tasks for various sets of
PVPs for regular PET and for an ensemble of PET mod-
els with no knowledge distillation (*—dist”™)



PET with multiple masks

- max-first: decoding strategy of
predicting tokens in order of probability (@) z =||Awiulpizza! |ltwas __ .
- Itr: left-to-right decoding T P2(r) -

- parallel: decoding all tokens

. qp(terii| z) < g3 (-ble | z)
simultaneously

untrained: untrained ALBERT ®) ZI_LD\ e wis. “e-J
COPA WSC ReCoRD Avg T A
Model Acc. Acc. Acc./Fl - :
PET 950 80.1 86.0/86.5 87.1 gy, (terri| 2')
PET —dist (max-first)  90.0 80.8 86.0/86.5 85.7
PET —dist (Itr) 89.0 79.8 84.7/853 84.6

Fi 3: Infi e for: alization consisti fth

PET ~dist (parallel) 770 80.8 82.5/83.1 802 l'g"lrek _"t irre""z ‘t’)lr"z‘e)rbv‘;";'"fl’"_ w"“:"ﬂf’ 2 lf
untrained 725 599 847/854 725 i el et e Lo bl S el S
ability of each token at its position in the cloze question
27, S PPTTS 2 ’ e 1

Table 5: Results on selected tasks for our proposed vari- P*(z) and identify the token with the highest probabil

ant of PET as well as other decoding strategies and for ity. (b) We insert this token into the cloze question and
untrained ALBERT compute the probability of the remaining token.




Variance of Labeled Examples

CB RTE MultiRC  Avg
Model Acc. / Fl Acc. EM/Fla -

GPT-3 82.1/572 729 325/748 654
PET —dist (Xp) 839/762 664 389/762 68.0
PET —dist (321) 82.1/574 614 392/779 632
PET ~dist (X2) 87.5/84.0 614 347/763 67.6

Table 6: Results on selected tasks for GPT-3 and for
PET using training sets Yo, >, Yo



Caveats

- GPT-3 few-shot learning is a demonstration of its capabilities at
inference time.
- GPT-3 was designed for language modeling, not few-shot
learning, so it is a bit of an unfair comparison.

- Unlabeled data is easier to obtain than labeled data, but
task-specific unlabeled data can still be hard to get
- ADAPET https://aclanthology.org/2021.emnlp-main.407.pdf
- in PET only label tokens (e.g. “yes”, “no”) get gradient
updates
- removes the distillation steps by introducing more
fine-grained losses across the whole vocabulary, giving the

model more chances to adapt to the task



https://aclanthology.org/2021.emnlp-main.407.pdf

Thank you :)



Questions

- Is this really few-shot learning if gradients are being updated?

- ForiPET: Isn't this method at risk of cascading failure if in some
iteration a model generates mislabeled data?

The authors sort-of address this:

“To avoid training future generations on mislabeled data, we
prefer examples for which the ensemble of models is
confident in its prediction. The underlying intuition is that even
without calibration, examples for which labels are predicted
with high confidence are typically more likely to be classified
correctly (Guo et al., 2017).”

To what extent can we rely on this confidence?



